JUMO dTRANS T07

Two-channel temperature transmitter

with HART®/Ex/SIL for installation in terminal head, B form, and for mounting on DIN rails

Operating Manual

70708000T90Z001K000

V6.00/EN/00681617/2023-05-23

Contents

1	Important information about this document
1.1 1.1.1 1.1.2 1.1.3 1.2 1.2.1 1.2.2 1.3 1.4	How this document works and how to use it6How this document works6Safety information6Functional safety6Symbols.6Warning symbols6Note symbols.6Other applicable device documentation.7Registered trademarks.7
2	Basic safety information
2.1 2.2 2.3	Requirements for personnel
3	Identifying the device version9
 3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 	Nameplate9Order details.11Scope of delivery.11Accessories12Certificates and approvals.12CE identification marking and declaration of conformity.12Certification of the HART® protocol.12Functional safety12
4	Mounting
4.1 4.1.1 4.2 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.4	Acceptance of goods, storage, and transport13Goods acceptance13Transport and storage13Conditions for installation13Dimensions13Mounting site13Mounting the head transmitter14DIN rail device installation18Mounting checklist18
5	Electrical connection
5.1 5.2	Installation notes

Contents

5.3 5.4 5.5 5.6 5.7	Terminal assignment for DIN rail devices.22Connecting sensor lines.24Connecting the voltage supply and signal cable.25Shielding and earthing.26Connection checklist.27
6	Operation
6.1 6.2 6.2.1 6.2.2 6.3 6.3.1 6.3.2 6.4 6.4.1 6.4.2 6.4.3	Overview of operating options.28Operating menu.29Structure of the operating menu.29Sub-menus and user roles.30Measured value display and operating elements.31Display elements.31Operating on-site.32Access to the operating menu via the operating tool.34PACTWare TM .34Source for device description files.34Field communicator 375/475.34
7	Integrating transmitters via HART® protocol
7.1 7.2 7.3	HART® device variables and measured values
8	Startup
8.1 8.2 8.3	Installation checklist
9	Maintenance
10	Accessories
11	Diagnosis and troubleshooting
11.1 11.2 11.2.1 11.2.2 11.3 11.4	Troubleshooting in the event of faults.41Diagnostic events.43Diagnostic event display.43Overview of diagnostic events.44Returns.47Disposal.47
11.5	Software history and overview of compatibility

Contents

12	Technical data
12.1 12.2 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.4 12.5 12.6	Analog input49Output52Features53Measurement deviation53Operating influences57Long-term drift60Sensor calibration62Voltage supply63Environmental influences64Case65
12.7	Approvals and approval marks
13	Dimensions
14	Operating menu and description of parameters
14.1 14.2 14.2.1 14.3 14.3.1 14.3.2	Overview of the operating menu.69Setup menu.75"Advanced setup" sub-menu.79Menu: Diagnostics.94"Diagnosis list" sub-menu.95
14.3.2 14.3.3 14.3.4 14.3.5 14.4 14.4.1 14.4.2 14.4.3 14.4.3 14.4.4 14.4.5	"Event log" sub-menu.95"Device information" sub-menu.96"Measured values" sub-menu.97"Simulation" sub-menu.99Menu: Expert99"System" sub-menu.99"Sensors" sub-menu.100"Output" sub-menu.105"Communication" sub-menu.105"Diagnosis" sub-menu.112

1 Important information about this document

1.1 How this document works and how to use it

1.1.1 How this document works

These instructions contain information that is required in the various phases of the device's lifecycle: from product identification, product acceptance and storage to mounting, connection, basic operation, and startup, through to troubleshooting, maintenance and disposal.

1.1.2 Safety information

When using the device in potentially explosive areas, you must adhere to any relevant national standards. A separate Ex safety manual has been created for measuring systems that are used in potentially explosive areas; this safety manual forms an integral component of this operating manual. The installation regulations, connection values and safety information contained in this manual must also be observed at all times. Always make sure you are using the Ex safety manual that corresponds to your Exapproved device. The number for the corresponding Ex safety manual can be found on the nameplate. You can only use an Ex safety manual when both numbers (on the Ex safety manual and on the nameplate) match completely.

1.1.3 Functional safety

NOTE!

Observe the SIL safety manual when using approved devices in safety-related systems according to IEC 61508.

1.2 Symbols

1.2.1 Warning symbols

CAUTION!

This symbol in connection with the signal word indicates that **material damage or data loss** will occur if the respective precautionary measures are not taken.

CAUTION!

This symbol indicates that **components could be destroyed** by electrostatic discharge (ESD = Electro Static Discharge) if the respective cautionary measures are not taken.

Only use the ESD packages intended for this purpose to return device inserts, assembly groups, or assembly components.

1.2.2 Note symbols

NOTE!

This symbol refers to important information about the product, its handling, or additional benefits.

REFERENCE!

This symbol refers to additional information in other sections, chapters, or other manuals.

1.3 Other applicable device documentation

Document	Purpose and content of the document
Data sheet 707080 JUMO dTRANS T07	Planning aid for the device The document provides all technical data related to the device and an overview of all accessories that can be ordered for the de- vice.
Quick start guide JUMO dTRANS T07	Quick approach to setting up your first measured value These instructions contain all the important information needed from goods acceptance to initial startup.
Safety Manual SIL JUMO dTRANS T07	This manual for functional safety according to IEC 61508:2010 describes deviating requirements for device installation, startup, and operation of the safety function.
Safety Manual Ex JUMO dTRANS T07	Safety information and technical data for electrical equipment for potentially explosive areas according to Directive 2014/34/EU (ATEX).

NOTE!

The documents listed are available: At www.jumo.net, under "Documentation" on the product page for the dTRANS T07.

1.4 Registered trademarks

HART® Trademark registered to the FieldComm Group™

2 Basic safety information

2.1 Requirements for personnel

Staff involved in installation, startup, diagnosis, and maintenance must meet the following criteria:

- Qualified personnel: Hold qualifications for their function and area of work
- Have been authorized by the system operator
- Are familiar with local regulations
- Prior to starting work: Have read and understood the instructions in this manual and additional documentation, as well as any certificates (depending on the application)
- · Follow instructions and note underlying conditions

Operating staff must meet the following criteria:

- Have been authorized by the system operator and have received instructions in line with the requirements of the task at hand
- Follow the instructions in this manual

2.2 Intended use

The dTRANS T07 series is a range of universal and configurable transmitters with either one or two sensor inputs for RTD temperature probes (RTD), thermocouples (TC), potentiometers, and voltage sensors.

The devices are available in two versions: for installation in a B-form terminal head according to DIN EN 50446 or for DIN-rail mounting according to IEC 60715 (TH35). Using a mounting element available as an accessory, the head transmitter can also be mounted to DIN rail.

The manufacturer is not liable for any damage resulting from improper use or failure to observe the intended use.

2.3 Operational safety

NOTE!

The device must be in good technical working order and safe for operation during use. The operator is responsible for operating the device without disruptions.

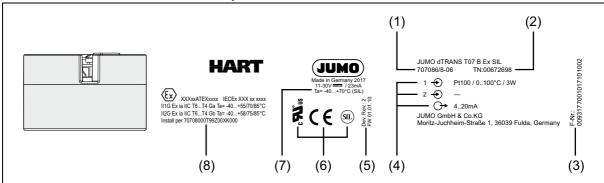
Areas that require approval

To prevent any risk to persons or the plant when the device is used in areas subject to approval requirements (e.g., explosion protection or safety-related systems):

- Use the technical data on the nameplate to check whether the ordered device can be used for its
 intended purpose in the approval-relevant area; the nameplate is located on the side of the transmitter housing
- Observe any specifications in separate documentation that forms an integral part of these instructions

Fault safety

The measurement device meets all general safety requirements according to EN 61010-1, EMC requirements according to the IEC/EN 61326 series, and NAMUR recommendations NE 21 and NE 89.



NOTE!

Only an SELV voltage is admissible for external voltage supply. The device must be equipped with an electrical circuit that meets the requirements of EN 61010-1 with regard to "Limited-energy circuits".

3.1 Nameplate

Nameplate on the head transmitter

(1) Device type

Compare the specifications on the nameplate with your order documents. The supplied device version can be identified using the order code in 11.

Example: Type 707086/8-06 (dTRANS T07 B Ex SIL – Two-wire transmitter with Ex and SIL approval for installation in terminal head, form B)

(2) Part no. (TN)

The part no. uniquely identifies an article in the catalog. It is important for communication between the customer and the sales department.

(3) Fabrication number (F-Nr)

The date of manufacture (year/calendar week) and the hardware version number are some of the aspects specified in the fabrication number.

Example: 00931770010**1710**1002 Here, we are looking at the 12th to the 15th digit (from the left). The device was produced in the **10th** week of 20**17**.

(4) Inputs and output

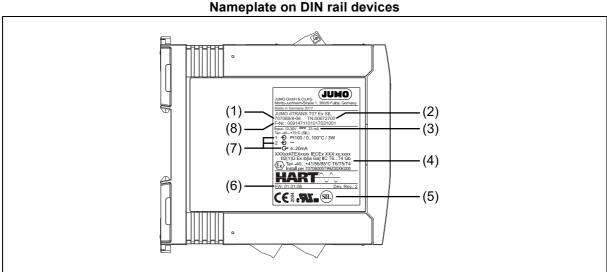
Example: Input 1 configured for Pt100 in a 3-wire circuit for a temperature range of 0 to 100 °C, input 2 is not configured, output 4 to 20 mA.

(5) Device revision and firmware version

Example: Device revision 2, firmware version 01.01.10.

(6) Approvals and certificates

Example: Device is SIL and UL-approved and CE-compliant.


(7) Voltage supply and admissible ambient temperature in SIL mode

Example: Voltage range DC 11 to 30 V, current consumption 23 mA, admissible ambient temperature in SIL mode -40 to +70 $^{\circ}$ C.

(8) Ex-approvals

Identification marking for approval in potentially explosive areas according to the ATEX Directive and designation for the corresponding Ex safety manual (installation on ...)

3 Identifying the device version

(1) Device type

Compare the specifications on the nameplate with your order documents. The supplied device version can be identified using the order code in 11.

Example: Type 707088/8-06 (dTRANS T07 T Ex SIL – 2-wire transmitter with Ex and SIL approval for mounting on DIN rails)

(2) Part no. (TN)

The part no. uniquely identifies an article in the catalog. It is important for communication between the customer and the sales department.

(3) Voltage supply and admissible ambient temperature in SIL mode

Example: Voltage range DC 12 to 30 V, current consumption 23 mA, admissible ambient temperature in SIL mode -40 to +70 °C.

(4) Ex-approvals

Identification marking for approval in potentially explosive areas according to the ATEX Directive and designation for the corresponding Ex safety manual (installation on ...)

(5) Approvals and certificates

Example: Device is SIL and UL-approved and CE-compliant.

(6) Firmware version and device revision

Example: Firmware version 01.01.08, device revision 2.

(7) Inputs and output

Example: Input 1 configured for Pt100 in a 3-wire circuit for a temperature range of 0 to 100 °C, input 2 is not configured, output 4 to 20 mA.

(8) Fabrication number (F-Nr)

The date of manufacture (year/calendar week) and the hardware version number are some of the aspects specified in the fabrication number.

Example: 0091471101017031001

Here, we are looking at the 12th to the 15th digit (from the left). The device was produced in the 3rd week of 2017.

3.2 Order details

								(1)	Basic type				
								707080	dTRANS T07 B – Two-wire transmitter for installation in terminal head, form B				
								707081	dTRANS T07 B SIL – Two-wire transmitter with SIL approval for in- stallation in terminal head, form B				
								707082	dTRANS T07 T – Two-wire transmitter for mounting on DIN rail				
								707083	dTRANS T07 T SIL – Two-wire transmitter with SIL approval for mounting on DIN rail				
								707085	dTRANS T07 B Ex – Two-wire transmitter with Ex approval for in- stallation in terminal head, form B				
								707086	dTRANS T07 B Ex SIL – Two-wire transmitter with Ex and SIL approval for installation in terminal head, form B				
								707087	dTRANS T07 T Ex – Two-wire transmitter with Ex approval for mounting on DIN rail				
								707088	dTRANS T07 T Ex SIL – Two-wire transmitter with Ex and SIL approval for mounting on DIN rail				
								(2)	Configuration				
Х	X	X	Х	X	X	X	X	8	Default settings (0 to 100 °C, Pt100 three-wire circuit, 4 to 20 mA)				
								(3)	Electrical connection type				
Х	X	X	X	X	X	X	X	06	Screw terminals				

	(1)		(2)		(3)	
Order code		1] -		
Order example	707080	- /	8	-	06	

3.3 Scope of delivery

	Туре									
	707080	707081	707082	707083	707085	707086	707087	707088		
Transmitter in the version ordered	Х	Х	Х	Х	Х	Х	Х	Х		
Operating manual										
SIL safety manual		Х		Х		Х		Х		
Ex safety manual					Х	Х	Х	Х		
Mounting materials (for mounting in the terminal head)	X	Х			Х	Х				
Quick start guide	Х	Х	Х	Х	Х	Х	Х	Х		

3 Identifying the device version

3.4 Accessories

Designation	Part no.
BD7 plug-in display for dTRANS T07 BD7	00672701
AB7 terminal head for dTRANS T07 B	00672702
FG7 field housing with display window for dTRANS T07 B	00672705
MW7 wall mounting set for field housing	00672707
MR7 tube mounting set for field housing	00672708
HART modem USB	00443447
Mounting element for mounting type 707080 B on DIN rail TH 35	00352463
End holder (screwable) for DIN rail TH 35	00528648

Ex-i repeater power supply/input isolating amplifier type 707530/38 00577948

3.5 Certificates and approvals

The device left the factory in perfectly safe working order. The device meets the requirements of the standard EN 61010-1 "Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use" as well as the EMC requirements under the IEC/EN 61326 series.

3.5.1 CE identification marking and declaration of conformity

The device meets the legal requirements of EU/EEU Directives. The manufacturer confirms compliance with the relevant directives with the use of the CE mark.

3.5.2 Certification of the HART® protocol

The temperature transmitter is registered by the FieldComm Group[™]. The device meets the requirements of HART[®] Communication Protocol Specifications, Revision 7.

3.5.3 Functional safety

Options for both device versions (head transmitter/DIN rail device) are available for use in safety-related systems according to IEC 61508.

- SIL 2: Hardware version
- SIL 3: Software version

4.1 Acceptance of goods, storage, and transport

4.1.1 Goods acceptance

- Is the packaging and its contents free from damage?
- Is the delivered product complete? Compare the scope of delivery with your order details.

4.1.2 Transport and storage

- The device must be packaged so that it is protected against impacts during storage (and transport). The original packaging offers optimal protection.
- Admissible storage temperature: Head transmitter -50 to +100 °C DIN rail device -40 to +100 °C

4.2 Conditions for installation

4.2.1 Dimensions

The device's dimensions are listed in chapter 13 "Dimensions", Page 67.

4.2.2 Mounting site

Head transmitter:

In terminal head, form B, according to DIN EN 50445 directly mounted to a measuring insert with a cable passage (central hole 7 mm), in field housing, offset from process , ⇔chapter 3.4 "Accessories", Page 12.

 DIN rail device: Designed to be mounted on DIN rails (IEC 60715 TH35)

NOTE!

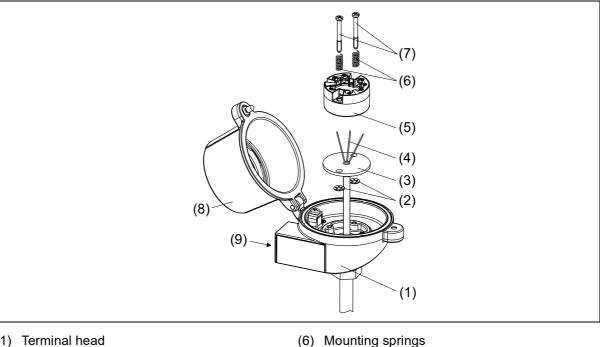
Using the accessory "Mounting element for mounting type 707080 B onto DIN rails TH 35" (⇔ page 12), the head transmitter can also be mounted on DIN rails according to IEC 60715.

Information about the conditions that must be in place at the mounting site in order for the device to be mounted properly (ambient temperature, protection type, etc.) can be found in chapter 12.5 "Environmental influences", Page 64.

For application in potentially explosive areas, the limit values for the certificates and approvals (see Ex safety manual) must be met.

4.3 Mounting

A cross-head screwdriver is required when mounting the head transmitter.

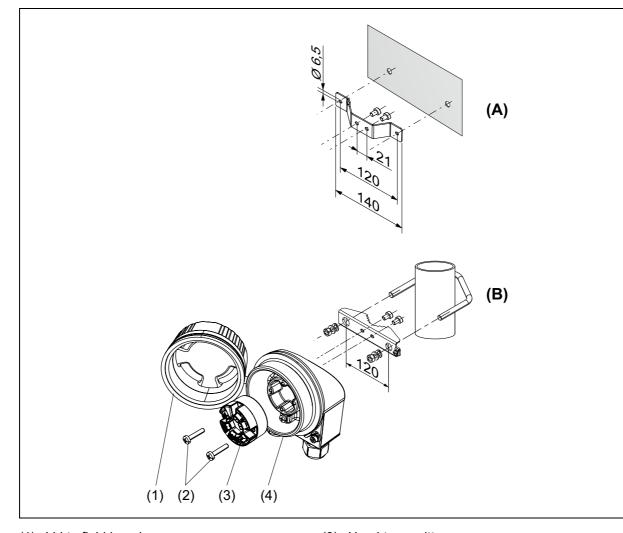

NOTE!

Do not screw the mounting screws too tight otherwise the head transmitter could be damaged, maximum torque = 1 Nm.

4 Mounting

4.3.1 Mounting the head transmitter

Mounting a terminal head, form B, according to DIN 43729



- (1) Terminal head
- (2) Retaining rings
- (3) Measuring insert
- (4) Connection wires
- (5) Head transmitter

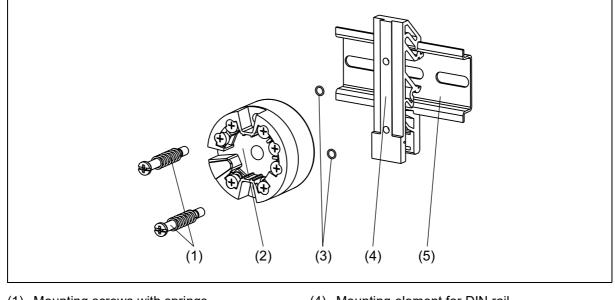
- (7) Mounting screws
- (8) Lid to terminal head
- (9) Cable passage

Process:

- 1. Open the lid to the terminal head (8).
- Guide the connecting wires (4) for the measuring insert (3) through the central hole in the head trans-2. mitter (5).
- 3. Place the mounting springs (6) onto the mounting screws (7).
- 4. Guide the mounting screws (7) through the side holes in the head transmitter and the measuring insert (3). Then secure both mounting screws with retaining rings (2).
- 5. Then tighten the head transmitter (5) with the measuring insert (3) in the terminal head.
- 6. After completing the wiring process, see page 17, close the lid to the terminal head (8) tightly.

Mounting in field housing for wall mounting (A) or pipe mounting (B)

(1) Lid to field housing

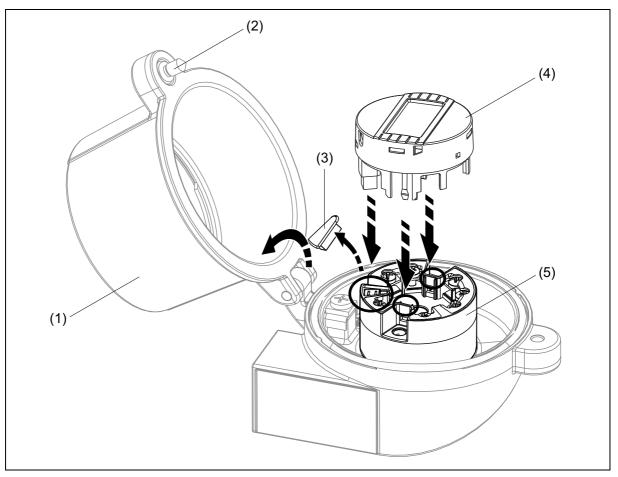

- (2) Mounting screws with springs
- (3) Head transmitter
- (4) Field housing

Process:

- 1. Open the lid (1) to the field housing (4).
- 2. Guide the mounting screws (2) through the side holes in the head transmitter (3).
- 3. Screw the head transmitter tightly onto the field housing.
- 4. After completing the wiring process, see page 17, close the lid to the field housing (1).

4 Mounting

Mounting on DIN rails according to IEC 60715


- (1) Mounting screws with springs
- (2) Head transmitter
- (3) Retaining rings

- (4) Mounting element for DIN rail
- (5) DIN rail

Process:

- 1. Press the mounting element (4) onto the DIN rail (5) until it engages.
- 2. Place the mounting screws onto the mounting screws (1) and guide these through the side holes in the head transmitter (2). Then secure both the mounting screws with retaining rings (3).
- 3. Tightly screw the head transmitter (2) onto the mounting element for the DIN rail (4).

Mounting the plug-in display to the head transmitter

- (1) Lid to terminal head
- (2) Screw
- (3) Cover

- (4) Plug-in display
- (5) Head transmitter

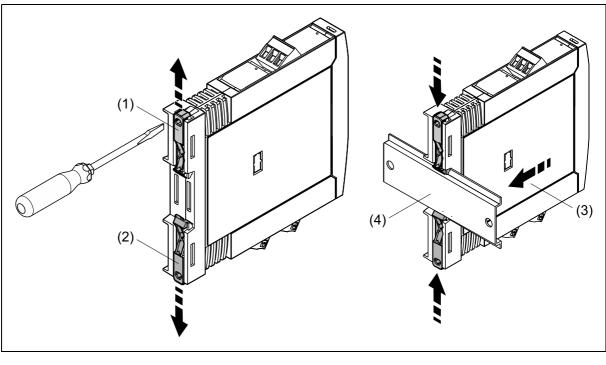
Process:

- 1. Undo the screw (2) on the lid to the terminal head (1). Open the lid.
- 2. Remove the cover (3) from the display connector.
- 3. Place the display module (4) on the mounted and wired head transmitter (5). The securing pins must engage securely in the head transmitter. When the display is fully mounted, tightly screw on the lid to the terminal head.

NOTE!

The plug-in display can only be used in conjunction with the suitable terminal head (AB 7 with display window) or field housing (FG 7 with display window).

4 Mounting


4.3.2 DIN rail device installation

NOTE!

Mount the device **vertically** and make sure it is pointing in the **right direction** (sensor connection at the bottom/voltage supply at the top)!

If the installation position is wrong, the measurement will not meet the maximum measuring accuracy when connecting a thermocouple and when using the internal cold junction.

- (1) Top DIN rail clip
- (2) Bottom DIN rail clip

- (3) DIN rail device
- (4) DIN rail
- 1. Slide the top DIN rail clip (1) up and the bottom clip (2) down until they engage.
- 2. Place the device (3) onto the DIN rail (4) from the front.
- 3. Slide the two DIN rail clips toward the DIN rail until they engage.

4.4 Mounting checklist

Perform the following checks after mounting the device:

State and specifications of the device	Important information
Does the device show any signs of damage (visual check)?	-
Do the environmental influences meet the device's spec- ifications (e.g., ambient temperature, measuring range)?	

5.1 Installation notes

A cross-head screwdriver is required when wiring the head transmitter with screw terminals. Use a cross-head screwdriver to wire DIN rail devices.

CAUTION!

Destruction of electronic components or the entire electronics system

- Do not install or wire the device under operating voltage.
- Do not connect a third-party connection to the connector for the head transmitter's plug-in display.

CAUTION!

Failure to adhere to approval requirements for devices with Ex approval

When connecting devices with Ex approval, observe the notes and connection diagrams in the Ex safety manual (additional documentation) for this device.

NOTE!

Do not screw the mounting screws too tight otherwise the transmitter could be damaged. Use a suitable screwdriver.

- Maximum torque for mounting screws = 1 Nm, screwdriver: Pozidriv PZ2
- Maximum torque for screw terminals = 0.35 Nm, screwdriver: Pozidriv PZ1

Always complete the following steps when wiring an installed head transmitter:

- 1. Open the cable fitting and case lid on the terminal head or field housing.
- 2. Guide the wires through the opening in the cable fitting.
- 3. Connect the wires according to the connection diagram on page 20.
- 4. Tighten the cable fitting again and then close the case lid.

To prevent connection errors, always read the notes in the connection checklist prior to startup.

5 Electrical connection

5.2 Terminal assignment for the head transmitter

Connection for	Explanations	Terminals
Voltage supply DC 11 to 42 V (standard) DC 11 to 32 V (SIL)	$R_b max. = (U_b max 11 V) \div 0.023 A$ $R_b = load resistance$ $U_b = voltage supply$	1 2 0 0
Current output 4 to 20 mA		+ -
HART communication	Burden $\ge 250 \ \Omega$ required in the signal circuit	

Analog input (sensor input) 1

RTD temperature probe	 Sensor current ≤ 0.3 mA 	3	4	5	6	7
2-wire circuit	- Compensation for the line resistance is possible (0 to 30 $\Omega)$	3	Ĺ	õ •tt	0	ō
RTD temperature probe 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	30	4 	5	6	7 0
RTD temperature probe 4-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	3	4	5 off	6	7 0
Resistance/potentiometer 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	30	4	50	6	7 0
Resistance/potentiometer 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	30	4	5	6	7 0
Resistance/potentiometer 4-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	3	4	5	6	7 0
Thermocouple		3 0	4 0	50-+	60	7 0
Voltage sensor		3 0	4 0	50 +	60	70

Analog input (sensor input) 2

Connection for	Explanations		Termi	nals	
RTD temperature probe 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	3 4	4 5 0 0	G G G G G G G G G G G G G G G G G G G	7 0
RTD temperature probe 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	3 4	4 5 0 0	6 9 11	7
Resistance/potentiometer 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 		4 5 0 0	6	7 0
Resistance/potentiometer 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 		4 5 0 0		7
Thermocouple		3 4	1 5 0 0	60	7
Voltage sensor		3 4	4 5 0 0	6 0 	7 0 +

CAUTION!

Electrostatic discharge!

Failure to observe this information could lead to parts of the electronics system being destroyed or malfunctioning.

• Protect the terminals against electrostatic discharge.

5 Electrical connection

5.3 Terminal assignment for DIN rail devices

Connection for	Explanations	Terminals
Voltage supply DC 12 to 42 V (standard) DC 12 to 32 V (SIL)	$R_b max. = (U_b max 12 V) \div 0.023 A$ $R_b = load resistance$ $U_b = voltage supply$	1 2 9 9
Current output 4 to 20 mA		 + -
HART [®] communication	Burden $\ge 250 \Omega$ required in the signal circuit	
Ammeter	For testing the output current	1 2 Test
HART® communication	On the front of the unit, for field communicator or similar	• •

Analog input (sensor input) 1

RTD temperature probe 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	6 0	3 4 0	5
RTD temperature probe 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	6 0	3 4 9 9 9 11	5
RTD temperature probe 4-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	6	3 4 9	5
Resistance/potentiometer 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	6 0		5
Resistance/potentiometer 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	6 0		5

Connection for	Explanations		Tern	ninals	
Resistance/potentiometer 4-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	6	3	4	5
Thermocouple		6 0	3 0	40+	50
Voltage sensor		6 0	3 0	4 0 +	50

Analog input (sensor input) 2

RTD temperature probe 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	
RTD temperature probe 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	
Resistance/potentiometer 2-wire circuit	 Sensor current ≤ 0.3 mA Compensation for the line resistance is possible (0 to 30 Ω) 	
Resistance/potentiometer 3-wire circuit	 Sensor current ≤ 0.3 mA Sensor line resistance max. 50 Ω per line 	
Thermocouple		
Voltage sensor		6 7 8 0 0 0 + -

CAUTION!

Electrostatic discharge!

Failure to observe this information could lead to parts of the electronics system being destroyed or malfunctioning.

Protect the terminals against electrostatic discharge.

5 Electrical connection

5.4 Connecting sensor lines

Terminal assignment for sensor connections ⇔chapter 5.2 "Terminal assignment for the head transmitter", Page 20 and chapter 5.3 "Terminal assignment for DIN rail devices", Page 22.

NOTE!

When connecting two sensors, make sure that the sensors are not galvanically connected (e.g., due to sensor elements that are not isolated from the protection tube). The resulting compensating currents would significantly distort the measurement.

The sensors must remain galvanically isolated from one another; to achieve this, each sensor must be separately connected to a transmitter. The transmitter guarantees sufficient galvanic isolation (>2 kV AC) between the input and output.

If both sensor inputs are assigned then the following connection combinations are possible:

Sensor input 2	Sensor input 1				
	RTD or potenti- ometer, 2-wire	RTD or potenti- ometer, 3-wire	RTD or potenti- ometer, 4-wire	Thermocouple (TC), voltage sen- sor	
RTD or potentiometer, 2- wire	Х	Х	-	X	
RTD or potentiometer, 3- wire	Х	Х	-	X	
RTD or potentiometer, 4- wire	-	-	-	-	
Thermocouple (TC), voltage sensor	Х	Х	X	X	

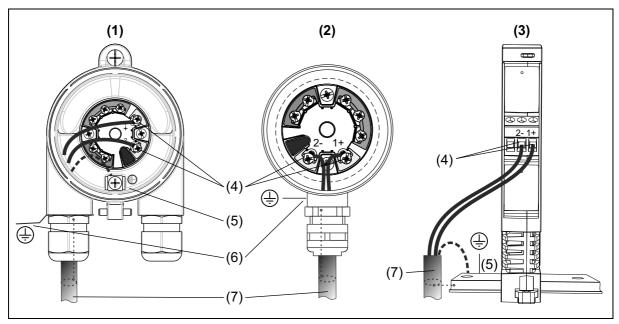
5.5 Connecting the voltage supply and signal cable

CAUTION!

Destruction of electronic components

Do not install or wire the transmitter under operating voltage.

NOTE!


Cable specification:

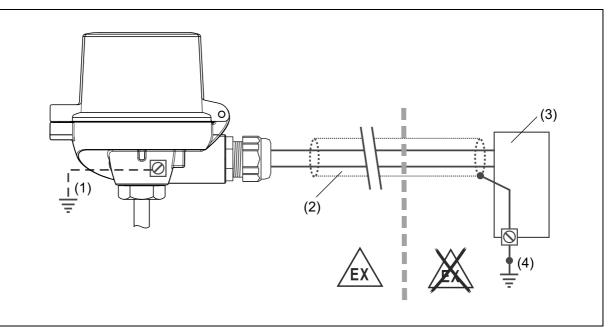
• A normal installation cable will suffice if you are only using the analog signal.

• We recommend using a shielded cable when using HART® communication. Observe the plant's earthing concept.

• When using 30-meter+ sensor lines with the DIN rail variant, always use a shielded cable. The use of shielded sensor wires is generally recommended.

Always observe the installation notes on 19.

- (1) Head transmitter installed in field housing
- (2) Head transmitter installed in terminal head
- (3) DIN rail device mounted on a DIN rail
- (4) Connection terminals for HART® protocol and voltage supply
- (5) Internal earthing terminal
- (6) External earthing terminal
- (7) Shielded signal cable (recommended for HART® protocol)


NOTE!

The terminals for the signal cable connection (1 + und 2 -) are protected against polarity reversal. Line cross-section max. 2.5 mm². Length of wire to be stripped: at least 10 mm.

5 Electrical connection

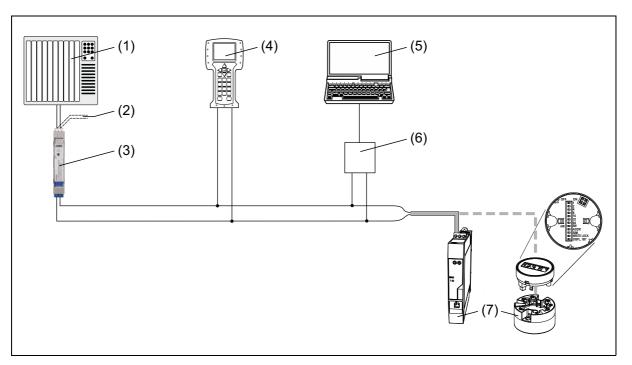
5.6 Shielding and earthing

Always observe the specifications issued by the HART® FieldComm Group during installation.

- (1) Optional earthing of the field device, insulated from shield
- (2) One-sided earthing of the shield
- (3) Power supply unit
- (4) Earthing point for HART® communication shield

NOTE!

If the cable shield is grounded at several points in systems without potential equalization, mains-frequency equalization currents can occur that may damage the signal cable or significantly affect the signal transmission.


- Ground the shield of the signal cable on one side only (do not connect to the ground terminal of the terminal head or field housing).
- Insulate the shield that is not connected.

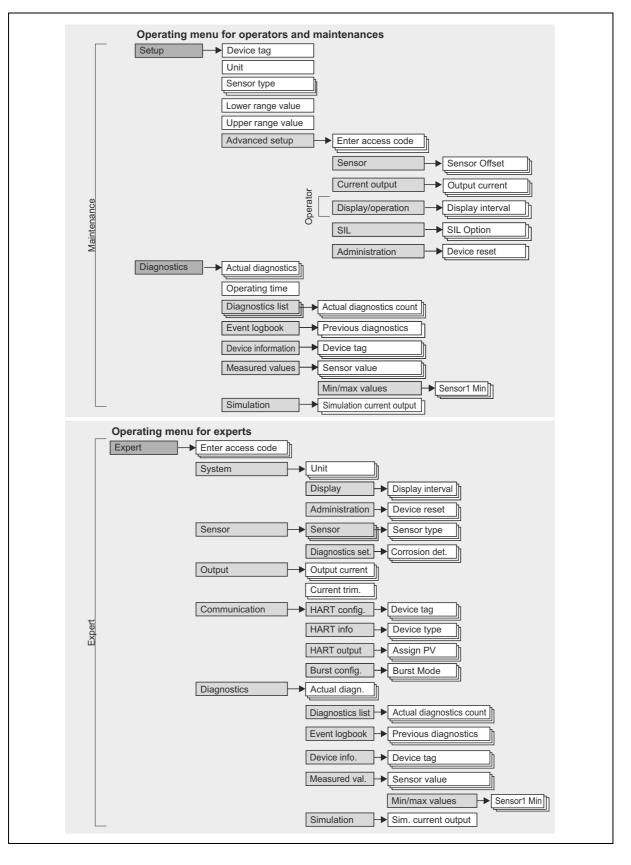
5.7 Connection checklist

State and specifications of the device	Important information
Do the device or cables show any signs of damage (visual check)?	-
Electrical connection	Important information
Does the voltage supply match the specifications on the	Head transmitter: U = 11 to 42 V _{DC}
nameplate?	DIN rail device: U = 12 to 42 V _{DC}
	SIL mode:
	U = 11 to 32 V_{DC} for head transmitters or
	U = 12 to 32 V_{DC} for DIN rail devices
Has tension been removed from the mounted cables?	-
Are the auxiliary energy supply and signal cable connected correctly?	⇔ Page 25
Are all the screw terminals tight enough?	-
Are all cable inlets mounted, tight enough,	-
and sealed?	
Are all case lids mounted and tight?	-

6 Operation

6.1 Overview of operating options

- (1) PLC (Programmable Logic Controller)
- (2) Connection for HART® modem
- (3) Transmitter power supply unit, e.g., JUMO Ex-i repeater power supply/input isolating amplifier 707530
- (4) Field communicator
- (5) Computer with operating tool, e.g., PACTWare™ +DTM
- (6) HART® modem
- (7) Temperature transmitter as head transmitter or DIN rail device; on-site operation via DIP switch on the back of the optional BD7 plug-in display is only possible for the head transmitter variant



NOTE!

On-site display and control elements are only available for the head transmitter if they are ordered with the BD7 plug-in display.

6.2 Operating menu

6.2.1 Structure of the operating menu

6 Operation

NOTE!

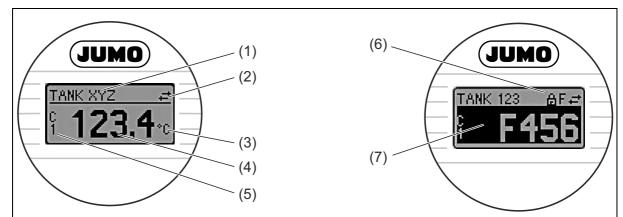
Configuration for SIL mode differs from configuration for standard mode. This configuration is described in the SIL safety menu.

6.2.2 Sub-menus and user roles

Certain parts of the menu are assigned to certain user roles. Each user role contains typical tasks from within the device's lifecycle.

Maintenance engineer, operator

Typical tasks	Menu	Content/operation
Startup:	Setup	Contains all parameters for startup:
 Measurement configuration Configuration of measured value processing (scaling, linearization, etc.) Configuration of analog measured value output Tasks in active measurement mode: Configuring the display Reading off measured values 		 Setup parameters After adjusting these parameters, the measurement is normally fully configured. "Advanced Setup" sub-menu contains further sub-menus and parameters: For more accurate configuration of the measurement (adjustment for particular measuring conditions), for conversion of the measured value (scaling, linearization), for scaling the output signal that is required during active measurement mode: configura- tion of the measured value display (displayed values, display format, etc.)
 Troubleshooting: Diagnosing and rectifying process errors Interpreting the device's error messages and rectifying the associated errors 	Diagnos- tics	 Contains all parameters for detecting and analyzing operating errors: Diagnosis list eContains up to three current error messages Event log Contains the last five (no longer valid) error messages "Device information" sub-menu Contains information for identifying the device "Measured values" sub-menu Contains all current measured values "Simulation" sub-menu Is used to simulate measured values or output values "Reset device" sub-menu


Expert

Typical tasks	Menu	Content/operation
 Typical tasks Tasks that require detailed knowledge of how the device works: Starting up measurements in difficult conditions Adapting the measurement for the best possible results in difficult conditions Configuring the communication interface in detail Diagnosing faults in difficult circumstances 	Menu Expert	 Contains all device parameters (including those that come under other menus). This menu's structure is based on the device's functional blocks: "System" sub-menu Contains all higher-level device parameters that do not concern measurement or measured value communication "Sensor" sub-menu Contains all parameters for configuring the measurement "Output" sub-menu Contains all parameters for configuring the analog current output
		"Communication" sub-menu Contains all parameters for configuring the digital communication interface
		"Diagnostics" sub-menu Contains all parameters for detecting and an- alyzing operating errors

6.3 Measured value display and operating elements

6.3.1 Display elements

Head transmitter

Pos.	Function	Description
(1)	Measuring points TAG display	TAG for the measuring point, 32 characters long
(2)	"Communication" display	The communication symbol appears during read and write access via the fieldbus protocol.
(3)	Units display	Units display for the measured value displayed
(4)	Measured value display	Displays the current measured value
(5)	Values/channel display S1, S2, DT, PV, I, %	e.g., S1 for a measured value from channel 1 or DT for de- vice temperature
(6)	"Configuration locked" display	When parameterization/configuration is locked using the hardware, the "Configuration locked" symbol appears.

6 Operation

(7)	Status signals	
	Symbols	Meaning
	F	"Operating fault" message An operating error has occurred. The measured value is no longer valid. An error message and "" (no valid mea- sured value available) alternate in the display, ⇔ chapter 11.2 "Diagnostic events", Page 43.
	С	"Service mode" The device is in service mode (e.g., during a simulation).
	S	"Outside of specification" The device is being operated outside of its technical speci- fications (e.g., during launch phase or cleaning).
	Μ	"Maintenance required" Maintenance is required. The measured value is still valid. The measured value and status message alternate in the display.

DIN rail device

NOTE!

The DIN rail variant does not come with an interface for the plug-in display and therefore has no on-site display.

Two LEDs on the front indicate the device status according to NAMUR NE44.

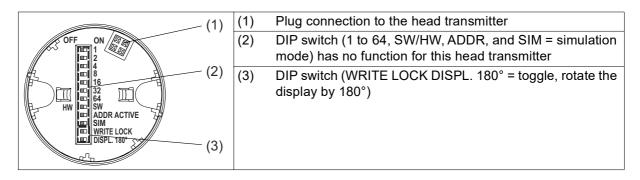
Туре	Function and features			
Status LED (red)	The device status is displayed when the device contains no errors. This function can no longer be guaranteed in the event of a fault.			
	LED off: No diagnosis message			
	LED lit up: Diagnostic display, category F			
	LED flashing: Diagnostic display, category C, S, or M			
Power LED (green) "ON"	The operating status is displayed when the device contains no errors. This function can no longer be guaranteed in the event of a fault.			
	LED off: Power cut or insufficient voltage supply			
	LED lit up: Voltage supply is OK			

6.3.2 Operating on-site

Miniature switches (DIP switches) on the back of the optional BD7 plug-in display can be used to adjust hardware settings for the fieldbus interface.

NOTE!

The BD7 plug-in display can be ordered as an accessory for the head transmitter or later for retroactive mounting, ⇒ page 40.



CAUTION!

Electrostatic discharge!

Failure to observe this information could lead to parts of the electronics system being destroyed or malfunctioning.

Protect the terminals against electrostatic discharge.

Process for adjusting the DIP switch:

- 1. Open the lid on the terminal head or field housing.
- 2. Remove the plug-in display from the head transmitter.
- Configure the DIP switch on the back of the display.
 In general: Switch to ON = Function is active; switch to OFF = Function is disabled.
- 4. Connect the plug-in display in the right position on the head transmitter. The head transmitter adopts the settings within one second.
- 5. Secure the lid back onto the terminal head or field housing.

Switching write protection on and off

Write protection is switched on or off using a DIP switch on the back of the optional plug-in display. If write protection is active, the parameters cannot be changed. A key symbol on the display indicates when write protection is active. Write protection prevents any write access to the parameters. Write protection remains in place even if the display is unplugged. To disable write protection, the device must be restarted when the display is plugged in and the DIP switch is disabled (WRITE LOCK = OFF).

Rotating the display

The display can be rotated 180° using the DIP switch "DISPL. 180°". The display remains rotated when the display is removed.

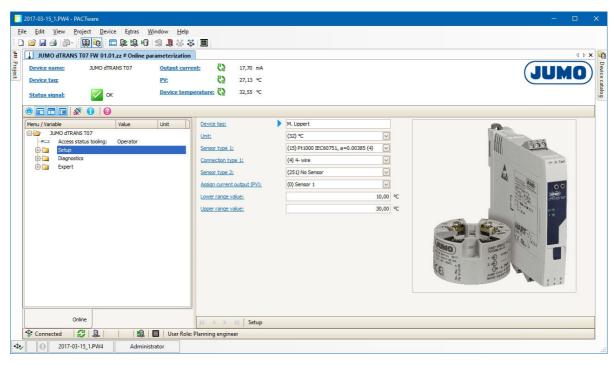
6 Operation

6.4 Access to the operating menu via the operating tool

6.4.1 PACTWare[™]

Functional range

PACTWare[™] is a DTM-based device asset management tool It can configure all intelligent field devices within a plant and provides administration support. By using status information, it also acts as a simple yet effective tool for checking devices' states. The HART® protocol is used for access.


Typical functions:

- Parameterizing transmitters
- Loading and saving device data (upload and download)
- Documenting the measuring point

Providing a source for device description files

⇒ Page 35

User interface

6.4.2 Source for device description files

⇔Page 35

6.4.3 Field communicator 375/475

Functional range

Handheld industrial operating device by Emerson Process Management for remote parameterization and measured value access via HART® protocol.

Source for device description files

⇒Page 35

NOTE!

For secure HART® communication according to the functional safety requirements under IEC 61508 (SIL mode), measured values are transferred securely from the transmitter via the HART® protocol to a connected controller, where there are then processed safely. Secure HART® communication works on special HART® commands that are only available in SIL mode.

Data on the device version

Firmware version	01.01.zz	 On the nameplate, page 9 Firmware version parameter Diagnostics - Device info - Firmware version
Manufacturer ID	24716	Manufacturer ID parameter Diagnostics - Device information - Manufacturer ID
Device name ID	JUMO dTRANS T07	Device type parameter Diagnostics - Device information - Device name
HART® protocol revision	7	-
Device revision	2	 On the transmitter nameplate, ⇔Page 9 Device revision parameter Diagnostics - Device info - Device revision

The following section lists the corresponding device description file (DTM/DD) and its source for each individual operating tools.

Operating tools

Operating tool	Source of the device descriptions (DTM, DD)
PACTWare™	www.jumo.net, product page for the dTRANS T07
Field communicator 375/475	Use the field communicator's update function

7.1 HART® device variables and measured values

The following default measured values are assigned to the device variables:

Device variables for temperature measurements

Device variable	Measured value
First device variable (PV)	Sensor 1
Second device variable (SV)	Device temperature
Third device variable (TV)	Sensor 1
Fourth device variable (QV)	Sensor 1

NOTE!

You can adjust the device variables assigned to the process variables under the following menu: Expert - Communication - HART® output.

7 Integrating transmitters via HART® protocol

7.2 Device variables and measured values

The following default measured values are assigned to the individual device variables:

Device variable code	Measured value
0	Sensor 1
1	Sensor 2
2	Device temperature
3	Average value from sensor 1 and sensor 2
4	Difference between sensor 1 and sensor 2
5	Sensor 1 (backup sensor 2)
6	Sensor 1 with toggling to sensor 2 when a limit value is overrange
7	Average value from sensor 1 and sensor 2 with backup

NOTE!

Device variables can be accessed from a HART® master using HART® command 9 or 33.

7.3 Supported HART® commands

NOTE!

The HART® protocol enables measured values and device data to be transferred between the HART® master and corresponding field device for configuration and diagnosis purposes. HART® masters, e.g., a handheld device or PC-based operating programs (e.g., PACTWare[™]), need device description files (DTM = Device Type Manager; DD = Device Descriptions) to be able to access all information on a HART® device. This type of information is transferred exclusively using things known as "commands".

Commands are categorized into three different groups:

- Universal commands:
 Universal commands are supported and used by all HART® devices. They cover things like the following functionalities: Detecting HART® devices and reading digital measured values.
- Common practice commands: Common practice commands provide functions that are supported/can be executed by the majority, but not all, field devices.
- Device-specific commands: These commands provide access to device-specific functions not standard to HART®. These commands access information from individual field devices, for example.

Command no.	Designation	
Universal commands		
0, Cmd0	Read unique identifier	
1, Cmd001	Read primary variable	
2, Cmd002	Read loop current and percent of range	
3, Cmd003	Read dynamic variables and loop current	
6, Cmd006	Write polling address	
7, Cmd007	Read loop configuration	
8, Cmd008	Read dynamic variable classifications	
9, Cmd009	Read device variables with status	
11, Cmd011	Read unique identifier associated with TAG	

7 Integrating transmitters via HART® protocol

Command no.	Designation
12, Cmd012	Read message
13, Cmd013	Read TAG, descriptor, date
14, Cmd014	Read primary variable transducer information
15, Cmd015	Read device information
16, Cmd016	Read final assembly number
17, Cmd017	Write message
18, Cmd018	Write TAG, descriptor, date
19, Cmd019	Write final assembly number
20, Cmd020	Read long TAG (32-byte TAG)
21, Cmd021	Read unique identifier associated with long TAG
22, Cmd022	Write long TAG (32-byte TAG)
38, Cmd038	Reset configuration changed flag
48, Cmd048	Read additional device status
Common practice	e commands
33, Cmd033	Read device variables
34, Cmd034	Write primary variable damping value
35, Cmd035	Write primary variable range values
36, Cmd036	Set primary variable upper range value
37, Cmd037	Set primary variable lower range value
40, Cmd040	Enter/Exit fixed current mode
42, Cmd042	Perform device reset
44, Cmd044	Write primary variable units
45, Cmd045	Trim loop current zero
46, Cmd046	Trim loop current gain
50, Cmd050	Read dynamic variable assignments
51, Cmd051	Write dynamic variable assignments
54, Cmd054	Read device variable information
59, Cmd059	Write number of response preambles
103, Cmd109	Write burst period
104, Cmd109	Write burst trigger
105, Cmd109	Read burst mode configuration
107, Cmd109	Write burst device variables
108, Cmd109	Write burst mode command number
109, Cmd109	Burst mode control

8.1 Installation checklist

Make sure that all final checks have been completed before starting up your measuring point:

- "Mounting" checklist, ⇒Page 18
- "Connection" checklist, ⇒Page 27

8.2 Switching on the transmitter

Once you have conducted the final checks, switch on the voltage supply. Once switched on, the transmitter runs through its built in test functions. After this process, all of the display's pixels are activated after around 7 seconds. The following sequence of messages then appears on the display:

Step	Display
1	"Display" text and display firmware version
2	Device name with firmware and hardware version
3	Sensor configuration display (sensor element and connection type)
4	Selected measuring range
5a	Current measured value or
5b	Current status message

NOTE!

If the switch-on process is not successful, the corresponding diagnostic event is displayed, depending on the cause. A detailed list of diagnostic events and the relevant troubleshooting process are provided in chapter 11 "Diagnosis and troubleshooting", Page 41.

In standard operation, the device works after around 30 s while the plugged in display works after 33 s. Normal measuring mode begins following a successful switch-on process. Measured and/or status values appear on the display.

8.3 Enabling parameterization

If the device is locked against parameterization, this has to be enabled using the hardware or software lock. If the lock symbol appears in the header in the measured value display, the device is read only.

To unlock

- Either switch the write protection switch located on the back of the plug-in display to the "OFF" position (hardware write protection), ⇔Page 32, or
- Deactivate software write protection using the operating tool, see description of the device parameter, "Defining the write protection code", ⇔"Reset device ", Page 93

NOTE!

When the hardware write protection is active (write protection switch on the back of the plug-in display is in the "ON" position), the write protection cannot be deactivated via the operating tool. The hardware write protection must always be deactivated before the software write protection can be activated or deactivated. As a general rule, no special maintenance work is required for the device.

10 Accessories

Various accessories are available for the device; they can either be ordered with the device or at a later date. Detailed information regarding the corresponding order code is available from the supplier or on the device product page at www.jumo.net.

Accessories included in the scope of delivery:

- · Multilingual quick start guide in paper form
- Optional SIL safety manual in paper form
- Optional Ex safety manual in paper form
- · Attachment material for head transmitters

Designation	Part no.
BD7 plug-in display for dTRANS T07 BD7	00672701
AB7 terminal head for dTRANS T07 B	00672702
FG7 field housing with display window for dTRANS T07 B	00672705
MW7 wall mounting set for field housing	00672707
MR7 tube mounting set for field housing	00672708
HART modem USB	00443447
Mounting element for mounting type 707080 B on DIN rail TH 35	00352463
End holder (screwable) for DIN rail TH 35	00528648

Ex-i repeater power supply/input isolating amplifier type 707530/38

00577948

11.1 Troubleshooting in the event of faults

Always start the troubleshooting process with the following checklists if any faults occur following startup or during measurement mode. The various questions will help you to effectively locate the source of the fault and find the corresponding solutions.

NOTE!

Due to its design type, the device cannot be repaired. However, you can still send the device in to be checked, ⇔chapter 11.3 "Returns", Page 47.

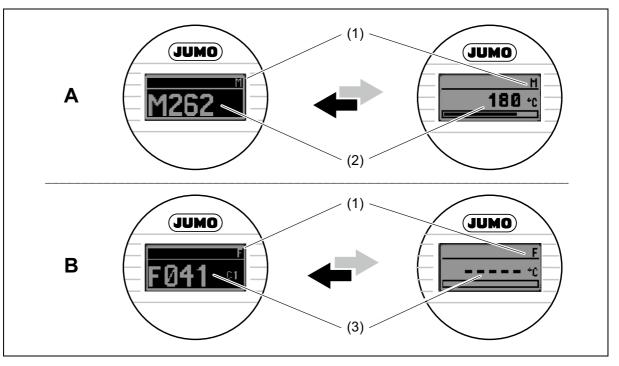
General errors

Error	Possible cause	Remedy	
Device is not responding	Voltage supply does not match the data on the nameplate	Apply the right voltage	
	The connecting cables have no contact with the terminals.	Check the contact of the cables and cor- rect if necessary.	
Output current <3.6 mA	Signal line is wired incorrectly	Check the wiring	
	The electronics system is faulty	Replace the device	
HART® communication is not working	The communication resistor is wrong or installed incorrectly	Install the right communication resistor (250 Ω)	
	HART® modem is not connected properly	Connect the HART® modem correctly	
Status LED is lit up or	Diagnostic events according to	Check diagnostic events:	
flashing red (DIN rail de- vices only)	NAMUR NE107, ⇔Page 43	 LED lit up: Diagnostic display, category F LED flashing: Diagnostic display, cat- 	
		egory C, S, or M	
Power LED is not light- ing up green (DIN rail devices only)	Power cut or insufficient voltage supply	Check the voltage supply and make sure the wiring is correct	

Check the plug-in display (option in conjunction with head transmitters)

Error	Possible cause	Remedy
No display visible	No voltage supply	Check the voltage supply to the head transmitter, terminals + and -
		• Check that the brackets are in the right position and check the connection between the display module and the head transmitter, ⇔Page 14
		If available, test the display module with another suitable head transmitter
	Display module is defective	Replace the module
	The head transmitter's electron- ics system is defective	Replace the head transmitter

Application error without status messages for RTD sensor conr	ection
---	--------


Error	Possible cause	Remedy	
Measured value is wrong/inaccurate	The sensor's installation position is defective	Install the sensor correctly	
	Heat lost through sensor	Note the sensor's insertion length	
	Device programming is faulty (number of wires).	Change the device function Connection type	
	Device programming is faulty (scaling)	Change the scaling	
	Wrong RTD selected	Change the device function Sensor type	
	Sensor connection	Check the sensor's connection	
	Line resistance of the sensor (2- wire) has not been offset	Offset the line resistance	
	Offset setting is wrong	Check the offset	
Error current (≤ 3.6 mA	The sensor is faulty	Check the sensor	
or ≥ 21 mA)	The RTD connection is wrong	Connect the connecting wires properly (terminal plan)	
	Device programming is faulty (e.g., number of wires).	Change the device function Connection type	
	Incorrect programming	The wrong type of sensor has been se- lected in the Sensor type device function; change it to the right type of sensor	

Application error without status messages for TC sensor connection

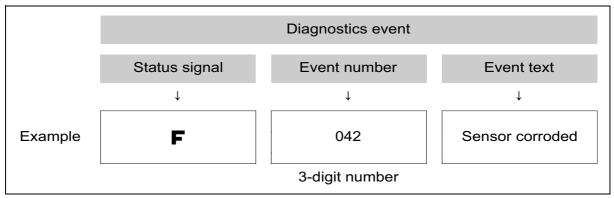
Error	Possible cause	Remedy	
Measured value is wrong/inaccurate	The sensor's installation position is defective	Install the sensor correctly	
	Heat lost through sensor	Note the sensor's insertion length	
	Device programming is faulty (scaling)	Change the scaling	
	The wrong type of thermocouple TC has been selected	Change the device function Sensor type	
	Wrong cold junction point set up	Configure the cold junction point correctly ⇒ "Cold junction n ", Page 76	
	Fault caused by the thermal wire welded into the protection tube (coupling of interference voltag- es)	Use a sensor where the thermal wire is not welded	
	Offset setting is wrong	Check the offset	
Error current (≤ 3.6 mA	The sensor is faulty	Check the sensor	
or ≥ 21 mA)	Sensor is not connected correctly	Connect the connecting wires correctly ⇔chapter 5 "Electrical connection", Page 19	
	Incorrect programming	The wrong type of sensor has been se- lected in the Sensor type device function; change it to the right type of sensor	

11.2 Diagnostic events

11.2.1 Diagnostic event display

- A Display for warning diagnostic response
- B Display for alarm diagnostic response
- (1) Status signal in the header
- (2) Status is displayed alternately with the main measured value in the form of the corresponding letter (M, C or S) plus the defined error number.
- (3) Status is displayed alternately with "- - -" (no valid measured value available) in the form of the corresponding letter (F) plus the defined error number.

Status signals


Symbol	Event category	Meaning
F	Operating fault	An operating fault has occurred. The measured value is no longer valid.
С	Service mode	The device is in service mode (e.g., during a simulation).
S	Outside the specification	The device is being operated outside of its technical spec- ifications (e.g., during launch phase or cleaning).
М	Maintenance required	Maintenance is required. The measured value is still valid.

Diagnostic response

Alarm	Measurement interrupted. The signal outlets assume the defined alarm status. A diagno- sis message is generated (status signal F).
Warning	The device continues to measure. A diagnosis message is generated (status signals M, C, or S).

Diagnostic event and event text

The fault can be identified with the diagnostic event. The event text helps by providing an indication of the fault.

If multiple diagnostic events occur at the same time, only the diagnosis message with the highest priority is displayed. Any other diagnosis messages are displayed in the **Diagnosis list** sub-menu, ⇔Page 95.

NOTE!

Previous diagnosis messages that are no longer valid are displayed in the **Event log** sub-menu, ⇔Page 95.

11.2.2 Overview of diagnostic events

Each diagnostic event is assigned to a particular event response at the factory. The user is able to change this allocation for certain diagnostic events.

NOTE!

The sensor input relevant for these diagnostic events can be identified with the **Current diagnostic channel** parameter or on the optional plug-in display.

Diagnosis no.	Brief text	Remedy	Status signal set at factory Can be changed to	Diagnos- tic response set at fac- tory
Diagnosis	for the sensor			
001	Device error	 Restart the device. Check the electrical connection to sensor 1. Check/replace sensor 1. Replace the electronics system. 	F	Alarm
006	Redundancy ac- tive	 Check the electrical wiring. Replace the sensor. Check the configuration of the connection type. 	Μ	Warning

Diagnosis no.	Brief text	Remedy	Status signal set at factory Can be changed to	Diagnos- tic response set at fac- tory
041	Sensor break	 Check the electrical wiring. Replace the sensor. Check the configuration of the connection type. 	F	Alarm
042	Sensor corrosion	 Check the electrical wiring. Replace the sensor. 	M	Warning ^a
043	Short-circuit	 Check the electrical wiring. Replace the sensor. 	F	Alarm
044	Sensor drift	 Check the sensors. Check the process temperatures. 	M F, S	Warning ^a
045	Working range	 Check ambient temperature. Check external reference measuring point. 	F	Alarm
062	Sensor connec- tion	 Check the electrical wiring. Replace the sensor. Check the configuration of the connection type. Contact service. 	F	Alarm
101	Working range underrange	 Check the process temperatures. Check the sensor. Check the sensor type. 	S F	Warning
102	Working range overrange	 Check the process temperatures. Check the sensor. Check the sensor type. 	S F	Warning
104	Backup active	 Check the electrical wiring for sensor 1. Replace sensor 1. Check the configuration of the connection type. 	М	Warning
105	Calibration inter- val	 Perform calibration and reset the calibration interval. Switch off the calibration counter. 	M F	Warning ^a
106	Backup not available	 Check the electrical wiring for sensor 2. Replace sensor 2. Check the configuration of the connection type. 	М	Warning
Diagnosis	for electronics sys	stem		
201 221	Device error Reference mea- surement	Replace the electronics system.Replace the electronics system.	F F	Alarm Alarm
241	Software	 Restart the device. Reset the device. Replace the device. 	F	Alarm

Diagnosis no.	Brief text	Remedy Status signal set at factory Can be changed to		Diagnos- tic response set at fac- tory	
242	Software incom- patible	Contact service.	F	Alarm	
261	Electronics mod- ule	Replace the electronics system.	F	Alarm	
262	Short circuit in module connec- tion	 Check the position of the display module on the head transmitter. Test the display module with another suit- able head transmitter Display module defective? Replace the module. 	M	Warning	
282	Memory	Replace the device.	F	Alarm	
283	Content of memo- ry	Replace the electronics system.	F	Alarm	
301	Voltage supply	 Increase the voltage supply. Check the connection wires for corrosion. 	F	Alarm	
Diagnosis	for configuration				
401	Factory reset	Please wait until the reset process is complete.	С	Warning	
402	Initialization	Please wait until the start process is com- plete.	С	Warning	
410	Data transmis- sion	Check HART® communication.	F	Alarm	
411	Download active	Please wait until the upload/download pro- cess is complete.	F, M or C ^b	-	
431	Factory calibra- tion ^c	Replace the electronics system.	F	Alarm	
435	Linearization	 Check the configuration of the sensor parameters. Check the configuration of the particular sensor linearization. Contact service. Replace the electronics system. 	F	Alarm	
437	Configuration	 Check the configuration of the sensor parameters. Check the configuration of the particular sensor linearization. Contact service. Replace the electronics system. 	F	Alarm	
438	Data record	Complete a new, secure parameterization process.	F	Alarm	
451	Data processing	Please wait until data processing is complete.	С	Warning	

Diagnosis no.	Brief text	Remedy	Status signal set at factory Can be changed to	Diagnos- tic response set at fac- tory
483	Simulation Input	Switch off simulation.	С	Warning
485	Simulation Measured value			
491	Simulation Current output			
525	HART® commu- nication	 Check the communication path. Check the HART® master. Enough power? Check HART® communication settings. Contact service. 	F	Alarm
Diagnosis	for processes	1	•	
803	Loop current	 Check the wiring. Replace the electronics system. 	F	Alarm
842	Process limit value	Check the scaling of the analog output.	M F, S	Warning ^a
925	Device tempera- ture	Maintain an ambient temperature in line with specification.	S F	Warning

^a Diagnostic response can be changed: "Alarm" or "Warning"

- ^b The status signal depends on the communications system used and cannot be changed.
- ^c For this diagnostic event, the device always emits the alarm state "low" (output current \leq 3.6 mA).

11.3 Returns

The device must be returned to the factory for repairs, factory calibration, delivery problems, or order problems. As an ISO-certified company and due to legal requirements, the manufacturer is obliged to apply special handling techniques to all products that are sent back to the factory and come into contact with media.

To make sure your device is sent back safely, correctly, and quickly, please read about the process and underlying conditions on the website http://www.jumo.net.

11.4 Disposal

The device contains electronic components and therefore needs to be treated as electronic waste upon disposal. Please also note any local disposal regulations in your country.

11.5 Software history and overview of compatibility

Change status

The firmware version (FW) on the nameplate and in the operating manual specifies the device's change status: XX.YY.ZZ (example 01.01.10).

- XX Change to the main version, compatibility is no longer guaranteed, the device and operating manual have been changed.
- YY Change to functions and operating principles, compatibility is guaranteed, the operating manual has been changed.
- ZZ Errors have been rectified and internal changes have been made, the operating manual has not changed.

Date	Firmware version	Modifications	Operating manual
06/17	01.01.zz	Original firmware	70708000T90Z000K000 (DE) 70708000T90Z001K000 (EN) 70708000T90Z002K000 (FR)

12.1 Analog input

General information

Measurand	Temperature (temperature-linear transmission behavior), resistance and voltage.	
Measuring range	It is possible to connect two mutually independent sensors. ^a .	
	The measurement inputs are not galvanically isolated from each other.	

With a 2-channel measurement, the same measurement unit must be configured on both channels (e.g. both °C, °F, or K). Mutually independent 2-channel measurement of resistance/potentiometer (ohm) and voltage sensor (mV) is not possible. In this case, either both channels must be configured to "ohm" or both channels must be configured to "mV".

RTD temperature probe

Standard	Designation ^a	α	Measuring range limits	Minimum measur- ing span	
	Pt100 (1)		-200 to +850 °C		
IEC 60751:2008	Pt200 (2)	0.003851 K ⁻¹	-200 to +850 °C	10 K	
120 007 31.2000	Pt500 (3)	0.003031 K	-200 to +500 °C		
	Pt1000 (4)		-200 to +250 °C		
JIS C1604:1984	Pt100 (5)	0.003916 K ⁻¹	-200 to +510 °C	10 K	
DIN 43760 IPTS-	Ni100 (6)	0.006180 K ⁻¹	-60 to +250 °C	10 K	
68	Ni120 (7)	0.000100 K	-60 to +250 °C	10 K	
GOST 6651-94	Pt50 (8)	0.003910 K ⁻¹	-85 to +1100 °C	10 K	
GUST 0051-94	Pt100 (9)		-200 to +850 °C		
	Cu50 (10)	- 0.004280 K ⁻¹	-180 to +200 °C	10 K	
OIML R84: 2003,	Cu100 (11)		-180 to +200 °C		
GOST 6651-2009	Ni100 (12)	0.006170 K ⁻¹	-60 to +180 °C		
	Ni120 (13)	0.000170 K	-60 to +180 °C		
OIML R84: 2003, GOST 6651-94	Cu50 (14)	0.004260 K ⁻¹	-50 to +200 °C	10 K	
-	Pt100 (Callendar– Van Dusen) nickel polynomial copper polynomial	-	The measuring range limits are defined by en- tering the limit values, which depend on the co- efficients A to C and R0.	10 K	
	• Connection type: two-wire, three-wire or four-wire connection, sensor current: ≤ 0.3 mA				
	• On a two-wire circuit compensation for the wire resistance is possible (0 to 30 Ω)				
 On three-wire and four-wire connections: sensor wire resistance 			nnections: sensor wire resistance of up to 50 Ω n	nax. per wire	

^a The digits after the designations are used to clarify distinctions, e.g. for distinguishing the same sensors on the basis of different standards. They are also used for configuration and safe parameterization of the transmitter.

Resistance/potentiometer (Ω)

Standard	Designation	α	Measuring range limits	Minimum measur- ing span
	Pagiatanga (Q)		10 to 400 Ω	10 Ω
-	Resistance (Ω)	-	10 to 2000 Ω	10 Ω

Thermocouples (TC)

Standard	Designation ^a	Measuring range limits		Mini-	
		Possible temperature range	Recommended tem- perature range	mum measur- ing span	
	Type A (W5Re-W20Re) (30)	0 to +2500 °C	0 to +2500 °C	50 K	
	Type B (PtRh30-PtRh6) (31)	+40 to +1820 °C	+500 to +1820 °C	50 K	
	Type E (NiCr-CuNi) (34)	-270 to +1000 °C	-150 to +1000 °C	50 K	
IEC 60584, part 1	Type J (Fe-CuNi) (35)	-210 to +1200 °C	-150 to +1200 °C	50 K	
<i>/</i> 1	Type K (NiCr-Ni) (36)	-270 to +1372 °C	-150 to +1200 °C	50 K	
	Type N (NiCrSi-NiSi) (37)	-270 to +1300 °C	-150 to +1300 °C	50 K	
	Type R (PtRh13-Pt) (38)	-50 to +1768 °C	+50 to +1768 °C	50 K	
	Type S (PtRh10-Pt) (39)	-50 to +1768 °C	+50 to +1768 °C	50 K	
	Type T (Cu-CuNi) (40)	-260 to +400 °C	-150 to +400 °C	50 K	
IEC 60584, part 1 ASTM E988-96	Type C (W5Re-W26Re) (32)	0 to +2315 °C	0 to +2000 °C	50 K	
ASTM E988-96	Type D (W3Re-W25Re) (33)	0 to +2315 °C	0 to +2000 °C	50 K	
	Type L (Fe-CuNi) (41)	-200 to +900 °C	-150 to +900 °C	50 K	
DIN 43710	Type U (Cu-CuNi) (42)	-200 to +600 °C	-150 to +600 °C	50 K	
GOST R8.8585-2001	Type L (NiCr-CuNi/Chro- mel-Copel) (43)	-200 to +800 °C	-200 to +800 °C	50 K	
	Internal cold junction (Pt100)				
	• External cold junction: adjustable value from -40 to +85 °C				
-	• Maximum sensor wire resistance 10 k Ω (if the sensor wire resistance is greater than 10 k Ω then an error message will be output in accordance with NAMUR NE89)				

^a The digits after the designations are used to clarify distinctions, e.g. for distinguishing the same sensors on the basis of different standards. They are also used for configuration and safe parameterization of the transmitter.

Voltage sensor (mV)

Standard	Designation	α	Measuring range limits	Minimum
				measur-
				ing span
-	Millivolt sensor (mV)	-	-20 to 100 mV	5 mV

Connection combinations

If both sensor inputs are assigned then the following connection combinations are possible:

			Sensor	input 1	
		RTD or resistance/ potentiometer, two- wire	RTD or resistance/ potentiometer, three- wire	RTD or resistance/ potentiometer, four- wire	Thermocouple (TC), voltage sensor
	RTD or resistance/ potentiometer, two- wire				
r input 2	RTD or resistance/ potentiometer, three- wire				
Sensor	RTD or resistance/ potentiometer, four- wire				
	Thermocouple (TC), voltage sensor			V	

12.2 Output

Output signal	4 to 20 mA, 20 to 4 mA (invertible)			
Signal coding	FSK ±0.5 mA via current signal			
Data transmission speed	1200 baud			
Galvanic isolation	U = AC 2 kV (input/output)			
Failure information in accordance with NAMUR NE43	Is generated if the measurement information is invalid or missing. A complete list of all errors that have occurred in the measurement device is emitted.			
Measuring range underflow	Linear drop from 4.0 to 3.8 mA			
Measuring range overflow	Linear rise from 20.0 to 20.5 mA			
Failure (sensor breakage, sensor short circuit,)	\leq 3.6 mA ("low") or \geq 21 mA ("high") ca The alarm setting "high" is adjustable to offers the flexibility required to meet the tems. In SIL mode only the alarm setti	between 21.5 mA and 23 mA and thus e requirements of different control sys-		
Burden	Head transmitter:	DIN rail device:		
	R _{b max} . = (U _{b max} . – 11 V) / 0.023 A (current output)	R _{b max} . = (U _{b max} . – 12 V) / 0.023 A (current output)		
	$R_{b}(\Omega)$ 1348 1098 250 0 11 16.75 36.25 42 U_{b}(V)	$R_{b}(\Omega)$ 1304 250 0 12 17.75 36.25 42 U_{b}(V)		
Linearization/transmission behavior	Temperature-linear, resistance-linear,	voltage-linear		
Mains frequency filter	50/60 Hz			
Filter	Digital 1st-order filter: 0 to 120 s			
Protocol-specific data HART version	7			
Device address in multidrop mode ^a	Software setting addresses 0 to 63			
Device description files (DD)	Information and files freely available on the Internet from: www.jumo.net			
Burden (communication resis- tance)	At least 250 Ω			
Write protection for device parame- ters				
Hardware	On the optional BD7 plug-in display of the head transmitter via DIP switc			
Software	Via password			
Switch-on delay	-	RT communication; $I_a \le 3.8$ mA during		
	 Approx. 28 s until the first valid me current output; l_a ≤ 3.8 mA during to 	easured value signal is present at the the switch-on delay		

^a Not possible in SIL mode; refer to the safety manual for the JUMO dTRANS T07 series (SIL versions).

^b Does not apply to SIL mode; refer to the safety manual for the JUMO dTRANS T07 series (SIL versions).

12.3 Features

Physical input measuring range of the sensors

Cu50, Cu100, RTD polynomial, Pt50, Pt100, Ni100, Ni120	10 to 400 Ω
Pt200, Pt500, Pt1000	10 to 2000 Ω
Thermocouple types: A, B, C, D, E, J, K, L, N, R, S, T, U	-20 to 100 mV

Response time

The update of the measured value depends on the sensor type and the circuit type, and is in the following ranges:

RTD temperature probe	0.9 to 1.3 s (depending on the circuit type two/three/four-wire)
Thermocouples (TC)	0.8 s
Reference temperature	0.9 s

When recording step responses, it must be taken into account that, where applicable, the times for the measurement of the second channel and the internal reference measuring point are added to the stated times.

Reference conditions

Calibration temperature	+25 °C ±3 K
Voltage supply	DC 24 V
Electrical circuit	Four-wire circuit for resistance calibration

12.3.1 Measurement deviation

Measurement deviation according to DIN EN 60770 and the reference conditions stated above. The specifications for the measurement deviation correspond to $\pm 2 \sigma$ (Gaussian normal distribution). The specification includes nonlinearities and repeatability.

Typical measurement deviation for RTD temperature probes

Standard	Designation	Measuring	Typical measurement deviation (±)	
		range	Digital value ^a	Value at the current out-
				put
IEC 60751:2008	Pt100 (1)		0.08 °C	0.1 °C
IEC 60751:2008	Pt1000 (4)	0 to +200 °C	0.08 °C	0.1 °C
GOST 6651-94	Pt100 (9)		0.07 °C	0.09 °C

^a Measured value transferred via HART®.

Typical measurement deviation for thermocouples (TC)

Standard	Designation	Measuring	Typical measurement deviation (±)		
		range	Digital value ^a	Value at the current out- put	
Thermocouples (TC)	Thermocouples (TC) compliant with the standard				
IEC 60584, part 1	Type K (NiCr-Ni) (36)		0.31 °C	0.39 °C	
IEC 60584, part 1	Type S (PtRh10-Pt) (39)	0 to +800 °C	0.97 °C	1.0 °C	
GOST R8.8585-2001	Type L (NiCr-CuNi) (43)		2.18 °C	2.2 °C	

^a Measured value transferred via HART®.

Standard	Designation	Measuring range	Measurement deviation (±)		
			Digital ^a		D/A ^b
			Maximum ^c	Related to the measured val- ue ^d	
	Pt100 (1)	-200 to +850 °C	≤ 0.12 °C	0.06 °C + 0.006 % × (MV - MRS)	
	Pt200 (2)	-200 to +850 °C	≤ 0.28 °C	0.12 °C + 0.015 % × (MV - MRS)	
IEC 60751:2008	Pt500 (3)	-200 to +500 °C	≤ 0.15 °C	0.05 °C + 0.014 % × (MV - MRS)	
	Pt1000 (4)	-200 to +250 °C	≤ 0.09 °C	0.03 °C + 0.013 % × (MV - MRS)	
JIS C1604:1984	Pt100 (5)	-200 to +510 °C	≤ 0.09 °C	0.05 °C + 0.006 % × (MV - MRS)	
DIN 43760 IPTS-68	Ni100 (6)	-60 to +250 °C	≤ 0.05 °C	0.05 °C - 0.006 % × (MV - MRS)	Я́Ч
	Ni120 (7)	-60 to +250 °C	≤ 0.05 °C	0.05 °C - 0.006 % × (MV - MRS)	4.8
	Pt50 (8)	-85 to +1100 °C	≤ 0.21 °C	0.10 °C + 0.008 % × (MV - MRS)	-
GOST 6651-94	Pt100 (9)	-200 to +850 °C	≤ 0.11 °C	0.05 °C + 0.006 % × (MV - MRS)	%
	Cu50 (10)	-180 to +200 °C	≤ 0.12 °C	0.10 °C + 0.006 % × (MV - MRS)	0.03
OIML R84: 2003,	Cu100 (11)	-180 to +200 °C	≤ 0.06 °C	0.05 °C + 0.003 % × (MV - MRS)	
GOST 6651-2009	Ni100 (12)	-60 to +180 °C	≤ 0.06 °C	0.06 °C - 0.006 % × (MV - MRS)	
	Ni120 (13)	-60 to +180 °C	≤ 0.05 °C	0.05 °C - 0.006 % × (MV - MRS)	1
OIML R84: 2003, GOST 6651-94	Cu50 (14)	-50 to +200 °C	≤ 0.11 °C	0.10 °C + 0.004 % × (MV - MRS)	

Maximum measurement deviation for RTD temperature probes

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

^d MV = measured value; MRS = measuring range start of the relevant sensor.

Maximum measurement deviation for resistors/potentiometers

Standard	Designation	Measuring range	Measureme		
			Digital ^a		D/A ^b
	Maximu	Maximum ^c	Related to the mea- sured value		
	Resistance Ω	10 to 400 Ω	33 mΩ	21 mΩ + 0.003 % × (MV - MRS)	0.03 % (≙ 4.8 µA)
-	Resistance 12	10 to 2000 Ω	310 mΩ	35 mΩ + 0.010 % × (MV - MRS)	

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

Standard	Designation	Measuring range	Measureme	ent deviation (±)	
			Digital ^a		D/A ^b
			Maximum ^c	Related to the measured value ^d	
	Туре А (30)	0 to +2500 °C	≤ 1.33 °C	0.80 °C + 0.021 % × (MV - MRS)	
IEC 60584-1	Туре В (31)	+500 to +1820 °C	≤ 1.43 °C	1.43 °C - 0.060 % × (MV - MRS)	
IEC 60584-1/ ASTM E988-96	Туре С (32)	0 to +2000 °C	≤ 0.66 °C	0.55 °C + 0.055 % × (MV - MRS)	_
ASTM E988-96	Type D (33)		≤ 0.75 °C	0.85 °C - 0.008 % × (MV - MRS)	
	Туре Е (34)	-150 to +1000 °C	≤ 0.22 °C	0.22 °C - 0.006 % × (MV - MRS)	h А
	Туре Ј (35)	150 to 1 1200 °C	≤ 0.27 °C	0.27 °C - 0.005 % × (MV - MRS)	4.8
	Туре К (36)	-150 to +1200 °C	≤ 0.35 °C	0.35 °C - 0.005 % × (MV - MRS)] ⇒)
IEC 60584-1	Type N (37)	-150 to +1300 °C	≤ 0.48 °C	0.48 °C - 0.014 % × (MV - MRS)	%
	Type R (38)	150 to 11769 °C	≤ 1.12 °C	1.12 °C - 0.030 % × (MV - MRS)	0.03
	Type S (39)	_ +50 to +1768 °C	≤ 1.15 °C	1.15 °C - 0.022 % × (MV - MRS)	0
	Туре Т (40)	-150 to +400 °C	≤ 0.35 °C	0.35 °C - 0.040 % × (MV - MRS)	
DIN 43710	Type L (41)	-150 to +900 °C	≤ 0.29 °C	0.29 °C - 0.009 % × (MV - MRS)	
	Type U (42)	-150 to +600 °C	≤ 0.33 °C	0.33 °C - 0.028 % × (MV - MRS)	
GOST R8.8585-2001	Type L (43)	-200 to +800 °C	≤ 2.20 °C	2.20 °C - 0.015 % × (MV - MRS)	1

Maximum measurement deviation for thermocouples (TC)

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

^d MV = measured value; MRS = measuring range start of the relevant sensor.

Maximum measurement deviation for voltage sensor (mV)

Standard	Designation	Measuring range	Measurement deviation (±)		
			Digital ^a		D/A ^b
			Maximum ^c	Related to the measured val- ue ^d	_
-	-	-20 to +100 mV	10,7 µV	7,7 μV + 0.0025 % × (MV – MRS)	4.8 µA

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

^d MV = measured value; MRS = measuring range start of the relevant sensor.

Calculation examples for measurement deviations

Sample calculation 1 with Pt100 (1) and the following parameters:

- Measured value (MV) = +200 °C
- Ambient temperature = +25 °C (same as reference conditions)
- Voltage supply = DC 24 V (same as reference conditions)

Measurement deviation digital = 0.06 °C + 0.006 % × (200 °C – (-200 °C))	0.084 °C
Measurement deviation D/A = 0.03 % × 200 °C	0.06 °C

This results in:

Measurement deviation of digital value (HART)	0.084 °C
Measurement deviation of analog value (current output)	0.103 °C
$\sqrt{(\text{measurement deviation digital}^2 + \text{measurement deviation D/A}^2)}$	

Sample calculation 2 with Pt100 (1) and the following parameters:

- Measured value (MV) = +200 °C
- Ambient temperature = +35 °C (10 K higher than reference conditions)
- Voltage supply = DC 30 V (6 V higher than reference conditions)

Measurement deviation digital = 0.06 °C + 0.006 % × (200 °C – (-200 °C))	0.084 °C
Measurement deviation D/A = 0.03 % × 200 °C	0.06 °C
Influence of the ambient temperature ^a Digital = $(35 - 25) \times (0.002 \% \times 200 \degree C - (-200 \degree C))$, at least 0.005 °C	0.08 °C
Influence of ambient temperature ^a D/A = (35 – 25) × (0.001 % × 200 °C)	0.02 °C
Influence of voltage supply ^a digital = (30 – 24) × (0.002 % × 200 °C – (-200 °C)), at least 0.005 °C	0.048 °C
Influence of voltage supply ^a D/A = (30 – 24) × (0.001 % × 200 °C)	0.012 °C

^a See table "Operating influences ", Page 57.

This results in:

Measurement deviation of digital value (HART) = $\sqrt{(\text{measurement deviation digital}^2 + \text{influence of ambient temperature digital}^2 + \text{influence of voltage supply digital}^2)}$	0.126 °C
Measurement deviation of analog value (current output) = $\sqrt{(\text{measurement deviation digital}^2 + \text{measurement deviation D/A}^2 + \text{influence of ambient temperature digital}^2 + \text{influence of ambient temperature D/A}^2 + \text{influence of voltage supply digital}^2 + \text{influence of voltage supply D/A}^2)}$	0.141 °C

The specifications for the measurement deviation correspond to 2 σ (Gaussian normal distribution).

Different measurement deviations apply in SIL mode ⇒ SIL safety manual for dTRANS T07 series (SIL designs).

12.3.2 Operating influences

The specifications for the measurement deviation correspond to 2 σ (Gaussian normal distribution).

Standard	Designation	Ambient ten Effect (±) pe	nperature: r 1 °C change		Voltage sup Effect (±) pe	ply: r 1 V change	
		Digital ^a		D/A ^b	Digital ^a		D/A ^b
		Maximum ^c	Related to the measured val- ue ^d		Maximum ^c	Related to the measured val- ue ^d	
	Pt100 (1)	≤ 0.02 °C	0.002 % × (MV – MRS), at least 0.005 °C		≤ 0.12 °C	0.002 % × (MV – MRS), at least 0.005 °C	
	Pt200 (2)	≤ 0.026 °C]	≤ 0.26 °C		
IEC 60751:2008	Pt500 (3)	≤ 0.014 °C	0.002 % × (MV – MRS), at least 0.009 °C		≤ 0.14 °C	0.002 % × (MV – MRS), at least 0.009 °C	
	Pt1000 (4)	≤ 0.01 °C	0.002 % × (MV – MRS), at least 0.004 °C		≤ 0.01 °C	0.002 % × (MV – MRS), at least 0.004 °C	
JIS C1604:1984	Pt100 (5)	≤ 0.01 °C	0.002 % × (MV – MRS), at least 0.005 °C		≤ 0.01 °C	0.002 % × (MV – MRS), at least 0.005 °C	
DIN 43760,	Ni100 (6)	≤ 0.005 °C		%	≤ 0.005 °C		0.001 %
IPTS-68	Ni120 (7)	≤ 0.005 °C		0.001	≤ 0.005 °C		
GOST 6651-94	Pt50 (8)	≤ 0.03 °C	0.002 % × (MV – MRS), at least 0.01 °C	0.0	≤ 0.03 °C	0.002 % × (MV – MRS), at least 0.01 °C	
GOST 0031-94	Pt100 (9)	≤ 0.02 °C	0.002 % × (MV – MRS), at least 0.005 °C		≤ 0.02 °C	0.002 % × (MV – MRS), at least 0.005 °C	
	Cu50 (10)	≤ 0.008 °C		1	≤ 0.008 °C		
OIML R84: 2003, GOST 6651-2009	Cu100 (11)	≤ 0.008 °C	0.002 % × (MV – MRS), at least 0.004 °C		≤ 0.008 °C	0.002 % × (MV – MRS), at least 0.004 °C	
	Ni100 (12)	≤ 0.004 °C		1	≤ 0.004 °C		1
	Ni120 (13)	≤ 0.004 °C		1	≤ 0.004 °C		1
OIML R84: 2003, GOST 6651-94	Cu50 (14)	≤ 0.008 °C			≤ 0.008 °C		

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

^d MV = measured value; MRS = measuring range start of the relevant sensor.

Standard	Designation	Ambient temperature: Effect (±) per 1 °C change			Voltage supply: Effect (±) per 1 V change		
		Digital ^a		D/A ^b	D/A ^b Digital ^a		D/A ^b
		Maximum ^c	Related to the measured val- ue ^d	-	Maximum ^c	Related to the measured val- ue ^d	
-	10 to 400 Ω	≤ 6 mΩ	0.015 % × (MV – MRS), at least 1.5 mΩ	1 %	≤ 6 mΩ	0.015 % × (MV – MRS), at least 1.5 mΩ	1 %
-	10 to 2000 Ω	≤ 30 mΩ	0.015 % × (MV – MRS), at least 15 mΩ	0.001	≤ 30 mΩ	0.015 % × (MV – MRS), at least 15 mΩ	0.001

Operating influences 'ambient temperature' and 'voltage supply' for resistors/potentiometers (Ω)

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

 d MV = measured value; MRS = measuring range start of the relevant sensor.

Standard	Designation		Ambient temperature: Effect (±) per 1 °C change			Voltage supply: Effect (±) per 1 V change	
		Digital ^a D/A		D/A ^b	Digital ^a		D/A ^b
		Maximum ^c	Related to the measured val- ue ^d		Maximum ^c	Related to the measured val- ue ^d	
IEC 60584-1	Туре А (30)	≤ 0.14 °C	0.0055 % × (MV – MRS), at least 0.03 °C		≤ 0.14 °C	0.0055 % × (MV – MRS), at least 0.03 °C	
	Туре В (31)	≤ 0.06 °C			≤ 0.06 °C		
IEC 60584-1/ ASTM E988-96	Туре С (32)	≤ 0.09 °C	0.0045 % × (MV – MRS), at least 0.03 °C		≤ 0.09 °C	0.0045 % × (MV – MRS), at least 0.03 °C	
ASTM E988-96	Type D (33)	≤ 0.08 °C	0.004 % × (MV – MRS), at least 0.035 °C		≤ 0.08 °C	0.004 % × (MV – MRS), at least 0.035 °C	
	Туре Е (34)	≤ 0.03 °C	0.003 % × (MV – MRS), at least 0.016 °C		≤ 0.03 °C	0.003 % × (MV – MRS), at least 0.016 °C	
	Туре Ј (35)	≤ 0.02 °C	0.0028 % × (MV – MRS), at least 0.02 °C)1 %	≤ 0.02 °C	0.0028 % × (MV – MRS), at least 0.02 °C	0.001 %
IEC 60584-1	Туре К (36)	≤ 0.04 °C	0.003 % × (MV – MRS), at least 0.013 °C	0.001	≤ 0.04 °C	0.003 % × (MV – MRS), at least 0.013 °C	0.0
	Type N (37)	≤ 0.04 °C	0.0028 % × (MV – MRS), at least 0.02 °C		≤ 0.04 °C	0.0028 % × (MV – MRS), at least 0.02 °C	
	Type R (38)	≤ 0.06 °C	0.0035 % × (MV – MRS), at least 0.047 °C		≤ 0.06 °C	0.0035 % × (MV – MRS), at least 0.047 °C	
	Type S (39)	≤ 0.05 °C		1	≤ 0.05 °C		1
	Туре Т (40)	≤ 0.01 °C		1	≤ 0.01 °C		1
DIN 43710	Type L (41)	≤ 0.02 °C			≤ 0.02 °C		
DIN 437 IU	Type U (42)	≤ 0.01 °C			≤ 0.01 °C		
GOST R8.8585- 2001	Type L (43)	≤ 0.01 °C			≤ 0.01 °C		

Operating influences 'ambient temperature' and 'voltage supply' for thermocouples (TC)

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

^d MV = measured value; MRS = measuring range start of the relevant sensor.

Standard Designation	Designation	Ambient temperature: Effect (±) per 1 °C change			Voltage supply: Effect (±) per 1 V change		
		Digital ^a	vigital ^a D/A ^b Digital ^a			D/A ^b	
		Maximum ^c	Related to the measured value	-	Maximum ^c	Related to the measured value	
-	-20 to 100 mV	≤ 3 µV		0.001 %	≤ 3 µV		0.001 %

Operating influences 'ambient temperature' and 'voltage supply' for voltage sensors (mV)

^a Measured value transferred via HART®.

^b Percentage data related to the configured measuring span of the analog output signal.

^c Maximum measurement deviation related to the stated measuring range.

12.3.3 Long-term drift

Long-term drift of RTD temperature probe

Standard	Designation	Long-term drift (±) ^a		
		After 1 year	After 3 years	After 5 years
		Related to the measure	d value	
	Pt100 (1)	≤ 0.016 % × (VM - DEM) or 0.04 °C	≤ 0.025 % × (VM - DEM) or 0.05 °C	≤ 0.028 % × (VM - DEM) or 0.06 °C
	Pt200 (2)	0.25 °C	0.41 °C	0.50 °C
IEC 60751:2008	Pt500 (3)	≤ 0.018 % × (VM - DEM) or 0.08 °C	≤ 0.03 % × (VM - DEM) or 0.14 °C	≤ 0.036 % × (VM - DEM) or 0.17 °C
	Pt1000 (4)	≤ 0.0185 % × (VM - DEM) or 0.04 °C	≤ 0.031 % × (VM - DEM) or 0.07 °C	≤ 0.038 % × (VM - DEM) or 0.08 °C
JIS C1604:1984	Pt100 (5)	≤ 0.015 % × (VM - DEM) or 0.04 °C	≤ 0.024 % × (VM - DEM) or 0.07 °C	≤ 0.027 % × (VM - DEM) or 0.08 °C
DIN 43760,	Ni100 (6)	0.04 °C	0.05 °C	0.06 °C
IPTS-68	Ni120 (7)	0.04 °C	0.05 °C	0.06 °C
0007.0054.04	Pt50 (8)	≤ 0.017 % × (VM - DEM) or 0.07 °C	≤ 0.027 % × (VM - DEM) or 0.12 °C	≤ 0.030 % × (VM - DEM) or 0.14 °C
GOST 6651-94	Pt100 (9)	≤ 0.016 % × (VM - DEM) or 0.04 °C	≤ 0.025 % × (VM - DEM) or 0.07 °C	≤ 0.028 % × (VM - DEM) or 0.07 °C
	Cu50 (10)	0.06 °C	0.09 °C	0.11 °C
OIML R84: 2003,	Cu100 (11)	≤ 0.015 % × (VM - DEM) or 0.04 °C	≤ 0.024 % × (VM - DEM) or 0.06 °C	≤ 0.027 % × (VM - DEM) or 0.06 °C
GOST 6651-2009	Ni100 (12)	0.03 °C	0.05 °C	0.06 °C
	Ni120 (13)	0.03 °C	0.05 °C	0.06 °C
OIML R84: 2003, GOST 6651-94	Cu50 (14)	0.06 °C	0.09 °C	0.10 °C

^a The higher value is valid.

Long-term drift for resistors/potentiometers (Ω)

Standard	Designation	Long-term drift (±) ^a				
		After 1 year	After 1 year After 3 years			
		Related to the measured value				
-	10 to 400 Ω	≤ 0.0122 % × (MV - MRS) or 12 mΩ	≤ 0.02 % × (MV - MRS) or 20 mΩ	≤ 0.022 % × (MW - MBA) or 22 mΩ		

Standard	Designation	Long-term drift (±) ^a		
		After 1 year	After 3 years	After 5 years
		Related to the measure		
-	10 to 2000 Ω	≤ 0.015 % × (MV - MRS)	≤ 0.024 % × (MV - MRS)	≤ 0.03 % × (MV - MRS)
	10 10 2000 12	or 144 mΩ	or 240 mΩ	or 295 mΩ

^a The higher value is valid.

Long-term drift for thermocouples (TC)

Standard	Designation	Long-term drift (±) ^a		
		After 1 year	After 3 years	After 5 years
		Related to the measure	d value	
IEC 60584-1	Туре А (30)	≤ 0.048 % × (MV - MRS) or 0.46 °C	≤0.072 % × (MV - MRS) or 0.69 °C	≤0.1 % × (MV - MRS) or 0.94 °C
	Туре В (31)	1.08 °C	1.63 °C	2.23 °C
IEC 60584-1/ ASTM E988-96	Туре С (32)	≤ 0.038 % × (MV - MRS) or 0.41 °C	≤0.057 % × (MV - MRS) or 0.62 °C	≤0.078 % × (MV - MRS) or 0.85 °C
ASTM E988-96	Туре D (33)	≤ 0.035 % × (MV - MRS) or 0.57 °C	≤0.052 % × (MV - MRS) or 0.86 °C	≤0.071 % × (MV - MRS) or 1.17 °C
	Туре Е (34)	≤ 0.024 % × (MV - MRS) or 0.15 °C	≤0.037 % × (MV - MRS) or 0.23 °C	≤ 0.05 % × (MV - MRS) or 0.31 °C
	Туре Ј (35)	≤ 0.025 % × (MV - MRS) or 0.17 °C	≤0.037 % × (MV - MRS) or 0.25 °C	≤0.051 % × (MV - MRS) or 0.34 °C
IEC 60584-1	Туре К (36)	≤ 0.027 % × (MV - MRS) or 0.23 °C	≤0.041 % × (MV - MRS) or 0.35 °C	≤0.056 % × (MV - MRS) or 0.48 °C
	Type N (37)	0.36 °C	0.55 °C	0.75 °C
	Type R (38)	0.83 °C	1.26 °C	1.72 °C
	Type S (39)	0.84 °C	1.27 °C	1.73 °C
	Туре Т (40)	0.25 °C	0.37 °C	0.51 °C
DIN 43710	Type L (41)	0.20 °C	0.31 °C	0.42 °C
DIN 437 10	Type U (42)	0.24 °C	0.37 °C	0.50 °C
GOST R8.8585- 2001	Type L (43)	0.22 °C	0.33 °C	0.45 °C

^a The higher value is valid.

Long-term drift for voltage sensor (mV)

Standard	Designation	Long-term drift (±) ^a				
		After 1 year	After 3 years	After 5 years		
		Related to the measured value				
-	-20 to 100 mV	· · · ·	, , ,	≤0.056 % × (MV - MRS)		
		or 5.5 µV	or 8.2 µV	or 11.2 µV		

^a The higher value is valid.

Long-term drift for analog output

Long-term drift ^a (±)				
After 3 years	After 5 years			
0.029 %	0.031 %			
	-			

^a Percentages related to the configured span of the analog output signal.

Influence of the reference point

Pt100 DIN IEC 60751 class B (internal cold junction on thermocouples (TC)).

12.3.4 Sensor calibration

Sensor transmitter matching	RTD sensors are among the most linear of all temperature measuring elements. Nonetheless, it is still necessary to linearize the output. For significant improvement of the temperature measurement accuracy, the device enables the use of two methods:
	 Callendar–Van Dusen coefficient (Pt100 RTD temperature probe)
	The Callendar–Van Dusen equation is described as follows: R _T = R ₀ [1 + AT + BT² + C (T–100) T³]
	Coefficients A, B, and C are used to adapt sensors (platinum) and transmitters in order to im- prove the accuracy of the measuring system. The coefficients for a standard sensor are spec- ified in IEC 60751. If no standard sensor is available or if you require even higher accuracy, the coefficients for each sensor can be calculated specifically with the help of sensor calibra- tion.
	Linearization for copper/nickel RTD temperature probes
	The equation for the polynomial for copper/nickel is described as follows: $R_T = R_0 (1 + AT + BT^2)$
	The coefficients A and B serve to linearize nickel or copper RTD temperature probes. The exact values for the coefficients are taken from the calibration data and are specific to every sensor. The sensor-specific coefficients are then transmitted to the transmitter.
	Sensor/transmitter matching with one of the methods stated above significantly improves the ac- curacy of the temperature measurement of the overall system. This results from the fact that the transmitter uses the specific data of the connected sensor rather than the standardized sensor curve data for calculation of the measured temperature.
Single-point cal- ibration (offset)	Shift of the sensor value
Two-point cali- bration (sensor trimming)	Correction (slope and offset) of the measured sensor value at the input of the transmitter.

Calibration of the current output

Correction of the 4 or 20 mA current output value (not possible in SIL operation).

12.4 Voltage supply

Devices without Ex-approval

••	
Voltage supply	(protected against polarity reversal)
Head transmitter	DC 11 V \leq V _{cc} \leq 42 V (standard)
	DC 11 V \leq V _{cc} \leq 32 V (SIL operation)
DIN rail device	DC 12 V \leq Vcc \leq 42 V (standard)
	DC 12 V \leq Vcc \leq 32 V (SIL operation)
Current consumption	
Typical	3.6 to 23 mA
Minimum current consumption	3.5 mA (4 mA in multidrop mode, not possible in SIL operation)
Current limit	≤ 23 mA
Residual ripple	Permanent residual ripple $U_{ss} \le 3 V$ with $U_b \ge 13.5 V$, $f_{max} = 1 \text{ kHz}$

Head transmitters with Ex-approv-

al

	Sensor circuit			Auxiliary energy circuit
Max. voltage U ₀	DC 7,6 V			
Max. current I ₀	13 mA			
Max. power P ₀	24.7 mW			
Max. voltage U _i				30 V
Max. current l _i				130 mA
Max. power P _i				800 mW
Max. internal inductance L _i	negligible			negligible
Max. internal capacitance C _i	negligible			negligible
Gas group	Ex ia IIC Ex ia IIB Ex ia IIA			
Max. external inductance L _o	10 mH 50 mH 50 mH		50 mH	
Max. external capacitance C _o	1 µF	4.5 µF	6.7 µF	

DIN rail devices with Ex-approval

	Sensor circuit			Auxiliary energy circuit
Max. voltage U ₀	DC 9 V			
Max. current I ₀	13 mA			
Max. power P ₀	29.3 mW			
Max. voltage U _i				30 V
Max. current l _i				130 mA
Max. power P _i				770 mW
Max. internal inductance L _i	negligible			negligible
Max. internal capacitance C _i	negligible			negligible
Gas group	Ex ia IIC Ex ia IIB Ex ia IIA			
Max. external inductance L _o	5 mH 20 mH 50 mH		50 mH	
Max. external capacitance C _o	0.93 μF 3.8 μF 4.8 μF			

12.5 Environmental influences

Ambient temperature for all devices without Ex-approval

· · · · · · · · · · · · · · · · · · ·	••
Standard operation	-40 to +85 °C
SIL operation	-40 to +70 °C

Ambient temperature for head transmitters with Ex-approval (without display)

Temperature class	Ambient temperature zone 1	Ambient temperature zone 0
Т6	-40 to +58 °C	-40 to +46 °C
Т5	-40 to +75 °C	-40 to +60 °C
T4	-40 to +85 °C	-40 to +60 °C

Ambient temperature for head transmitters with Ex-approval (with display^a)

Temperature class	Ambient temperature zone 1	Ambient temperature zone 0
Т6	-40 to +55 °C	
T5	-40 to +70 °C	
T4	-40 to +85 °C	

^a At temperatures below -20 °C the display may react sluggishly; at temperatures below -30 °C the display may no longer be readable.

Ambient temperature for DIN rail devices with Ex-approval

Temperature class	Ambient temperature zone 1	Ambient temperature zone 0
Т6	-40 to +46 °C	
T5	-40 to +61 °C	
T4	-40 to +85 °C	

Storage temperature	
Head transmitter	-50 to +100 °C
DIN rail device	-40 to +100 °C
Altitude	Up to 4000 m above mean sea level in accordance with IEC 61010-1, CAN/ CSA C22.2 No. 61010-1
Climate class	
Head transmitter	Climate class C1 in accordance with EN 60654-1
DIN rail device	Climate class B2 in accordance with EN 60654-1
Humidity	
Condensation in accordance with IEC 60 068-2-33	Permissible for head transmitter in terminal head form B, not permissible for DIN rail device
Maximum relative humidity	95 % in accordance with IEC 60068-2-30
Protection type	
Head transmitter	IP00
Head transmitter in the field en-	IP66/67 (NEMA Type 4x encl.)
closure	
DIN rail device	IP20
Shock and vibration resistance	Shock resistance in accordance with KTA 3505 (section 5.8.4 Shock test)
Head transmitter	2 to 100 Hz at 4 g (increased vibration stress)
DIN rail device	2 to 100 Hz at 0.7 g (general vibration stress)

Electromagnetic compatibility (EMC)	In accordance with all relevant requirements of the IEC/EN 61326 series and the NAMUR EMC Recommendation (NE21). Details can be found in the declaration of conformity. All tests were passed both with and without the digital HART communication running. Maximum measurement deviation < 1 % of the measuring range
Interference immunity	Industrial requirement
Interference emission	Class B – Households and small businesses
Measurement category	Measurement category II in accordance with IEC 61010-1. The measure- ment category is intended for measurements in electrical circuits that are electrically connected directly to the low-voltage network.
Pollution degree	Pollution degree 2 in accordance with IEC 61010-1

12.6 Case

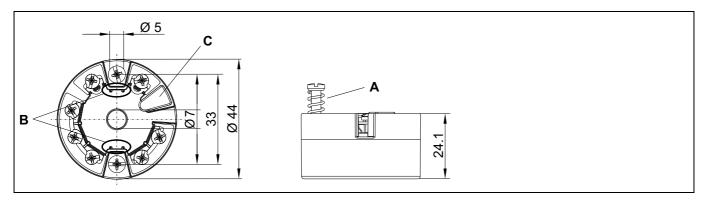
All materials used are RoHS compliant.

	Versions for B-head mounting	Versions for DIN-rail mounting		
Material of enclosure body	Polycarbonate (PC), corresponds to L	JL94, V-2 UL recognized		
Material of connection terminals	Nickel-plated brass with gold-plated c	ontacts		
Potting material	WEVO PU 403 FP / FL	-		
Terminal design	Screw terminals			
Wire design	Rigid or flexible ^a			
Conductor cross section	\leq 2.5 mm ² (14 AWG)	\leq 2.5 mm ² (14 AWG)		
	In terminal head, form B			
Mounting types	In field enclosure (wall or pipe mount- ing)	On DIN-rail		
	On DIN rail (with mounting element)			
Installation position	Any			
Weight	~ 40 to 50 g	~ 100 g		

^a Recommendation: do not use ferrules.

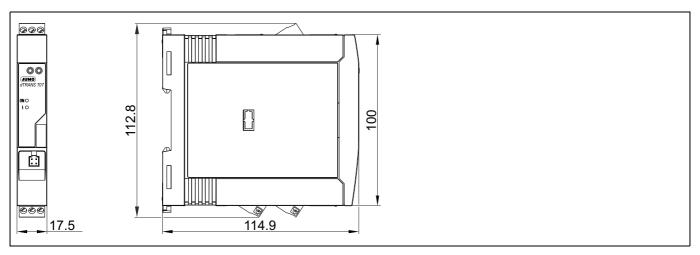
12.7 Approvals and approval marks

The current editions of all safety-relevant standards can be found in the declarations of conformity, which are shown in the safety manuals for the device. The declarations of conformity are also available for download on the manufacturer's website.


Transmitter dTRANS T07

Approv	al mark	Test facility	Certificate/ Certification number	Inspection basis	Valid for
ATEX	II1G Ex ia IIC T6T4 Ga II2G Ex ia IIC T6T4 Gb	Buero Veritas	EPS 17 ATEX 1 129 X	EN 60079-0	Туре 707085/ Туре 707086/
	II2(1)G Ex ib [ia Ga] IIC T6…T4 Gb				Type 707087/ Type 707088/
IECEx	Ex ia IIC T6T4 Ga Ex ia IIC T6T4 Gb	Buero Veritas	IECEx EPS 17.0075X	IEC 60079-0	Туре 707085/ Туре 707086/
	Ex ib [ia Ga] IIC T6T4 Gb				Туре 707087/ Туре 707088/
SIL	2/3	TÜV Süd	Z10 17 05 01028 0001	IEC 61508	Type 707081/ Type 707083/ Type 707086/ Type 707088/
c UL us		Underwriters Laboratories	E201387	UL 61010-1, CAN/ CSA-22.2 No. 61010-1	All types

Plug-in display BD7


Approva	al mark	Test facility	Certificate/ Certification number	Inspection basis	Valid for
ATEX	II2G Ex ia IIC T6T4 Gb	Buero Veritas	EPS 18 ATEX 1 113 X	EN 60079-0	BD7
IECEx	Ex ia IIC T6T4 Gb	Buero Veritas	IECEx EPS 18.0048X	IEC 60079-0	

Head transmitter

- **A** Spring deflection mounting screws ≥ 5 mm (not with US-M4 mounting screws)
- B Mounting elements for plug-on display BD7
- **C** internal service interface (not intended for use)

DIN rail device

Terminal head for dTRANS T07

B 7 with display window in the cap	Specifications	
	Cable inlets	1
107.5	Ambient temperature	-50 to +150 °C without cable fitting
	Material	
	Enclosure	Aluminum, polyester powder coating
	Seals	Silicone
91.6	Cable inlet screw connec- tions	M20 × 1.5
	Protective fitting connection	M24 × 1.5
	Color	
50	Head	Light gray
	Сар	Light gray
	Weight	420 g

13 Dimensions

Field enclosure for dTRANS T07

FG 7 with display window in the cap	Specifications	
	Cable inlets	2
107.5	Ambient temperature	-50 to +150 °C without cable fitting
	Material	
	Enclosure	Aluminum, polyester powder coating
Q	Seals	Silicone
<u>91.6</u>	Cable inlet screw connec- tions	M20 × 1.5 (2×)
	Color	
	Head	Light gray
50	Сар	Light gray
	Weight	420 g

14.1 Overview of the operating menu

NOTE!

The following tables list all parameters included in the "Setup, diagnosis, and expert" operating menus. The page number refers to the relevant description of the parameter.

Depending on the parameterization, not all sub-menus and parameters are available in every device. Further details can be found in the description of the parameters under the "Pre-requisite" category. The parameter groups for Expert setup contain all parameters in the operating menus: Setup, diagnosis, and additional parameters that are reserved exclusively for experts.

Parameterization for SIL mode is different than standard mode and is described in the SIL safety manual.

NOTE!

n = Placeholder for sensor inputs (1 or 2)

Setup	Measuring point identifier	⇔Page 75
	Unit	⇔Page 76
	Sensor type 1	⇔Page 76
	Connection type 1	⇔Page 76
	2-wire compensation 1	⇔Page 76
	Cold junction 1	⇔Page 76
	Cold junction reference 1	⇔Page 77
	Sensor type 2	⇔Page 76
	Connection type 2	⇔Page 76
	2-wire compensation 2	⇔Page 76
	Cold junction 2	⇔Page 76
	Cold junction reference 2	⇔Page 77
	Assign current output (PV)	⇔Page 78
	Start measur. range	⇔Page 78
	End measur. range	⇔Page 79

Setup	Advanced setup	Enter access code	⇔Page 80
		Access rights for operating software	⇔Page 81
		Locking status	⇔Page 81
		Device temperature alarm	⇔Page 81

Setup	Advanced setup	Sensor tech- nology	Sensor offset 1	⇔Page 81
			Sensor offset 2	⇔Page 81
			Corrosion detection	⇔Page 82
			Drift/difference monitoring	⇔Page 82
			Drift/difference alarm category	⇔Page 82
			Drift/difference alarm delay	⇔Page 83
			Drift/difference limit value	⇔Page 83
			Sensor toggle limit value	⇔Page 83

14 Operating menu and description of parameters

Setup	Advanced setup	Current out- put	Output current	⇔Page 84
			Measurement mode	⇔Page 84
			Out of range category	⇔Page 85
			Error behavior	⇔Page 85
			Error current	⇔Page 85
			Current trimming 4 mA	⇔Page 85
			Current trimming 20 mA	⇔Page 86

Setup	Advanced setup	Display	Display interval	⇔Page 86
		Display format	⇔Page 87	
		1st display value	⇔Page 87	
			Decimal places for 1st display val-	⇔Page 88
			ue	
		2nd display value	⇔Page 88	
	Decimal places for 2nd display value	⇔Page 88		
			3rd display value	⇔Page 89
			Decimal places for 3rd display val-	⇔Page 89
			ue	

Setup	Setup Advanced setup SIL	anced setup SIL	SIL option	⇔Page 90
		Operating status	⇔Page 90	
			Enter SIL checksum	⇔Page 91
			SIL checksum	⇔Page 91
			SIL configuration timestamp	⇔Page 92
			SIL startup mode	⇔Page 92
		SIL HART® mode	⇔Page 92	
			Force safe state	⇔Page 92

Setup	Advanced setup	Administra- tion	Reset device	⇔Page 93
			Define write protection code	⇔Page 93

Diagnos- tics	Current diagnosis	⇔Page 94
	Remedy ^a	⇔Page 94
	Last diagnosis 1	⇔Page 94
	Operating time	⇔Page 94

^a When an error occurs, this appears as a "Tooltip" at the end of the pointer when you move the pointer to the error code (e.g., "F043 short-circuit").

Diagnos- tics	Diagnosis list	Number of current diagnosis messages	⇔Page 95
		Current diagnosis	⇔Page 95

14 Operating menu and description of parameters

		Current diagnosis channel	⇔Page 95
Diagnos- tics	Event log	Last diagnosis n	⇔Page 95
		Last diagnosis channel n	⇔Page 96
Diagnos- tics	Device information	Measuring point identifier	⇔Page 96
		Serial number	⇔Page 96
		Firmware version	⇔Page 96
		Device name	⇔Page 96
		Order code	⇔Page 97
		Configuration counter	⇔Page 97
Diagnos- tics	Measured values	Value sensor 1	⇔Page 97
		Value sensor 2	⇔Page 97
		Device temperature	⇔Page 97

Diagnos- tics	Measured values	Min./max. values	Sensor n min. value	⇔Page 97
			Sensor n max. value	⇔Page 98
			Reset min./max. sensor values	⇔Page 98
			Min. device temperature	⇔Page 98
			Max. device temperature	⇔Page 98
			Reset min./max. device temperature	⇔Page 98

Diagnos- tics	Simulation	Current output simulation	⇔Page 99
		Current output value	⇔Page 99

Expert	Enter access code	⇔Page 80
	Access rights for operating software	⇔Page 81
	Locking status	

Expert	System	Unit	⇔Page 76
		Attenuation	⇔Page 99
		Alarm delay	⇔Page 100
		Mains frequency filter	⇔Page 100
		Device temperature alarm	⇔Page 100

14 Operating menu and description of parameters

Expert	System	Display	Display interval	⇔Page 86
			Display format	⇔Page 87
			1st display value	⇔Page 87
		Decimal places for 1st display val- ue	⇔Page 88	
			2nd display value	⇔Page 88
			Decimal places for 2nd display value	⇔Page 88
			3rd display value	⇔Page 89
			Decimal places for 3rd display val-	⇔Page 89
			ue	

Expert	System	Administra- tion	Reset device	⇔Page 93
			Define write protection code	⇔Page 93

Expert	Sensor technology	Sensor n	Sensor type n	⇔Page 76
			Connection type n	⇔Page 76
			2-wire compensation n	⇔Page 76
			Cold junction n	⇔Page 76
			Cold junction reference	⇔Page 77
			Sensor offset n	⇔Page 81
			Lower sensor limit n	⇔Page 100
			Upper sensor limit n	⇔Page 100
			Sensor serial number	⇔Page 100

Expert	Sensor technology	Sensor n	Sensor trimming	Sensor trimming	⇔Page 101
				Sensor trimming start value	⇔Page 101
				Sensor trimming end value	⇔Page 102
				Sensor trimming min. span	⇔Page 102

Expert	Sensor technology	Sensor n	Lineariza- tion	Lower sensor limit n	⇔Page 102
				Upper sensor limit n	⇔Page 103
				Call./v. Dusen coeff. R0, A, B, C	⇔Page 103
				Polynomial coeff. R0, A, B	⇔Page 103

Expert	Sensor technology	Diagnosis settings	Corrosion detection	⇔Page 82
			Drift/difference monitoring	⇔Page 82
			Drift/difference alarm category	⇔Page 82
			Drift/difference alarm delay	⇔Page 83
			Drift/difference limit value	⇔Page 83
			Sensor toggle limit value	⇔Page 83
			Calibration counter start	⇔Page 104
			Calibration counter alarm catego-	⇔Page 104
			ry	
			Calibration counter start value	⇔Page 104
			Calibration countdown	⇔Page 104

Expert	Output	Output current	⇔Page 84
		Measurement mode	⇔Page 105
	Start measur. range	⇔Page 78	
	End measur. range	⇔Page 79	
		Out of range category	⇔Page 85
		Error behavior	⇔Page 85
		Error current	⇔Page 85
		Current trimming 4 mA	⇔Page 85
		Current trimming 20 mA	⇔Page 86

Expert	Communication	HART® con- figuration	Measuring point identifier	⇔Page 105
			Mark instr.	⇔Page 105
			HART® address	⇔Page 105
			Preamble number	⇔Page 106
			Configuration changed	⇔Page 106
			Reset configuration changed flag	⇔Page 106

Expert	Communication	HART® info	Device type	⇔Page 106
		Device revision	⇔Page 106	
			Manufacturer ID	⇔Page 106
			HART® revision	⇔Page 107
			Description	⇔Page 107
			Message	⇔Page 107
			Hardware revision	⇔Page 107
			RevSW	⇔Page 107
			Date	⇔Page 107

Expert	Communication	HART® output	Assign current output (PV)	⇔Page 107
			PV	⇔Page 108
			Assign SV	⇔Page 108
			SV	⇔Page 108
			Assign TV	⇔Page 108
			TV	⇔Page 108
			Assign QV	⇔Page 109
			QV	⇔Page 109

Expert	Communication	Burst configuration	Burst mode	⇔Page 109
			Burst command	⇔Page 109
			Burst variables 0 to 3	⇔Page 110
			Burst trigger mode	⇔Page 110
			Burst trigger value	⇔Page 111
			Burst min. time frame	⇔Page 111
			Burst max. time frame	⇔Page 112

Expert	Diagnostics	Current diagnosis	⇔Page 94
		Remedy ^a	⇔Page 94
		Last diagnosis 1	⇔Page 94
		Operating time	⇔Page 94
2			71 ugo 04

^a When an error occurs, this appears as a "Tooltip" at the end of the pointer when you move the pointer to the error code (e.g., "F043 short-circuit").

Expert	Diagnostics	Diagnosis list	Number of current diagnosis	⇔Page 95
			messages	
			Current diagnosis	⇔Page 95
			Current diagnosis channel	⇔Page 95

Expert	Diagnostics	Event log	Last diagnosis n	⇔Page 95
			Last diagnosis channel	⇔Page 96

Expert	Diagnostics	Device infor- mation	Measuring point identifier	⇔Page 75
			Serial number	⇔Page 96
			Firmware version	⇔Page 96
			Device name	⇔Page 96
			Order code	⇔Page 97
			Advanced order code	⇔Page 112
			Advanced order code 2	⇔Page 112
			Advanced order code 3	⇔Page 112
			ENP version	⇔Page 112
			Device revision	⇔Page 112

Manufacturer ID	⇔Page 112
Manufacturer	⇔Page 113
Hardware revision	⇔Page 113
Configuration counter	⇔Page 97

Expert	Diagnostics	Measured values	Value sensor n	⇔Page 97
			Sensor n raw value	⇔Page 113
			Device temperature	⇔Page 97

Expert	Diagnostics	Measured values	Min./ max.values	Sensor n min. val- ue	⇔Page 97
				Sensor n max. val- ue	⇔Page 98
				Reset min./max. sensor values	⇔Page 98
				Min. device tem- perature	⇔Page 98
				Max. device tem- perature	⇔Page 98
				Reset min./max. device tempera- ture	⇔Page 98

Expert	Diagnostics	Simulation	Current output simulation	⇔Page 99
			Current output value	⇔Page 99

14.2 Setup menu

This menu contains all parameters for the device's basic settings. This restricted parameter block can be used to start up the transmitter.

NOTE!

n = Placeholder for sensor inputs (1 or 2)

Measuring point identifier

Navigation	Setup > Measuring point identifier Diagnosis > Device information > Measuring point identifier Expert > Diagnosis > Device information > Measuring point identifier
Description	Specifies a unique identifier for the measuring point so that it can be quickly identified in the plant. It is displayed in the header of the plug-in display, ⇔chapter 6.3 "Measured value display and oper- ating elements", Page 31.
Input	Max. 32 characters, such as letters, numbers, or special charac- ters (e.g., @, %, /)

Default setting	None

Unit

Navigation	Setup > Unit	
	Expert > System > Unit	
Description	Selects the measuring unit for all measured values	
Selection	°C, °F, K, °R, Ohm, mV	
Default setting	°C	

Sensor type

Navigation	Setup > Sensor type n	
	Expert > Sensors > Sensor n > Sensor type n	
Description	Selects the sensor type for the sensor input in question	
	 Sensor type 1: Settings for sensor input 1 	
	Sensor type 2: Settings for sensor input 2	
Selection	A list of all possible sensor types is provided in chapter 12 "Technical data", Page 49.	
Default setting	Sensor type 1: Pt100 IEC 60751	
	Sensor type 2: No sensor	

NOTE!

Note the terminal assignment when connecting the individual sensors, ⇔chapter 5 "Electrical connection", Page 19. The possible connection combinations also have to be observed for 2-channel operation.

Connection type n

Navigation	Setup > Connection type n Expert > Sensors > Sensor n > Connection type n	
Prerequisite	An RTD sensor must be specified as the sensor type.	
Description	Selects the sensor's connection type	
Selection	Sensor 1 (connection type 1): 2-wire, 3-wire, 4-wire	
	Sensor 2 (connection type 2): 2-wire, 3-wire	
Default setting	Sensor 1 (connection type 1): 4-wire	
	Sensor 2 (connection type 2): 2-wire	

2-wire compensation n

Navigation	Setup > 2-wire compensation nExpert > Sensors > Sensor n > 2-wire compensation nAn RTD sensor with 2-wire connection type must be specified as the sensor type.	
Prerequisite		
Description	Defines the resistance value for 2-wire compensation in RTDs	
Input	0 to 30 Ω	
Default setting	0	

Cold junction n

Navigation

Setup > Cold junction n

	Expert > Sensors > Sensor n > Cold junction n	
Prerequisite	A thermocouple (TC) sensor must be specified as the sensor type.	
Description	Selects the cold junction measurement for the temperature compensation of thermocouples (TC).	
Selection	 No compensation: No temperature compensation is used Internal measurement: Internal cold junction temperature is used Reference: Fixed reference is used Sensor 2 measured value: The measured value from sensor 2 is used 	
Default setting	Internal measurement	

NOTE!

When **Reference** is selected, the compensation value is defined by means of the **Cold junction reference** parameter.

When **Measured value sensor 2** is selected, temperature measurement for channel 2 has to be configured.

NOTE!

Measured value sensor 2 cannot be selected for the Cold junction 2 parameter.

Cold junction reference n

Navigation	Setup > Cold junction reference	
	Expert > Sensors > Sensor n > Cold junction reference	
Prerequisite	When Cold junction n is selected, the parameter Reference must be adjusted.	
Description	Defines the fixed reference for temperature compensation	
Selection	-50 to +85 °C	
Default setting	0.00	

Assign current output (PV)

Navigation	Setup > Assign current output (PV)
	Expert > Communication > HART® output > Assign current output (PV)
Description	Assigns a measurand to the first HART® value (PV).
Selection	 Sensor 1 (measured value) Sensor 2 (measured value) Device temperature Average of both measured values: 0.5 × (SV1 + SV2) Difference between sensor 1 and sensor 2: SV1 - SV2 Sensor 1 (backup sensor 2): When sensor 1 fails, the value from sensor 2 automatically becomes the first HART® value (PV): Sensor 1 (OR-sensor 2) Sensor toggle: When the selected threshold value T for sensor 1 is exceeded, the measured value from sensor 2 becomes the first HART® value (PV); the system switches back to sensor 1 when the measured value from sensor 1 is at least 2 K below T: sensor 1 (sensor 2, if sensor 1 > T) Average value: 0.5 × (SV1 + SV2) with backup (measured value from sensor 1 or sensor 2 in the event of a sensor error
	in the other sensor)
Default setting	Sensor 1

NOTE!

The threshold value can be adjusted with the **Sensor toggle limit value** parameter \Rightarrow Page 83. Temperature-dependent toggling allows two sensors to be combined with advantages for various temperature ranges.

Start	measur.	range
-------	---------	-------

Navigation	Setup > Start measur. range
	Expert > Output > Start measur. range
Description	Allocates a measured value to the current value 4 mA.
Input	Depends on the sensor type and the assignment for the current output (PV)
Default setting	0

NOTE!

The adjustable limit value depends on the type of sensor used in the **Sensor type** parameter \Rightarrow Page 76 and the value assigned to the **Assign current output (PV)** parameter.

End measur. range

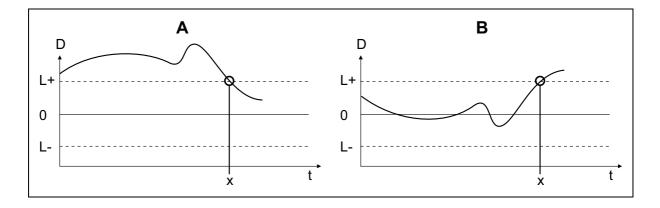
Navigation	Setup > End measur. range
	Expert > Output > End measur. range
Description	Allocates a measured value to the current value 20 mA.
Input	Depends on the sensor type and the assignment for the current output (PV)
Default setting	100

NOTE!

The adjustable limit value depends on the type of sensor used in the **Sensor type** parameter \Rightarrow Page 76 and the value assigned to the **Assign current output (PV)** parameter.

14.2.1 "Advanced setup" sub-menu

Corrosion monitoring


Corrosion of sensor connection wires can lead to the measured value being distorted. The device therefore enables you to detect corrosion before distortion of the measured values can occur. Corrosion monitoring is only possible for RTDs with 4-wire connections and thermocouples.

Drift/difference monitoring

If the measured values differ by a specified value when two sensors are connected, a status signal is generated as a diagnostic event. The drift/difference monitoring function can be used to verify that measured values are correct and enable the connected sensors to monitor one another. Drift/difference monitoring can be activated with the **Drift/difference monitoring** parameter. There are two different modes. When underrange (ISV1 - SV2I < Drift/difference limit value) is selected, a status message is emitted if the value falls below the limit value; when overrange (drift) (ISV1 - SV2I > Drift/difference limit value) is selected, a message is emitted when the value rises above the limit value.

Process for configuring drift/different monitoring

1.	Start
2.	Under drift/difference monitoring, select Overrange for drift detection or Underrange for difference monitoring.
3.	Set the alarm category for drift/difference monitoring to Outside of specification (S) , Mainte-nance required (M) , or Failure (F) as required.
4.	Adjust the limit value for drift/difference monitoring to the required value.
5.	End

- A Limit value undercut
- B Limit value exceedance
- D Drift
- L+ Upper limit value
- L- Lower limit value
- t Time
- x Diagnostic event, status signal is generated

Enter access code

Navigation	Setup > Advanced setup > Enter access code
	Expert > Enter access code
Description	Activates the service parameters via the operating tool; if the wrong access code is entered, the user keeps his current access rights.
Additional information	This parameter is used to switch the software device write protec- tion on and off.
	Software device write protection in conjunction with a download from an operating tool that can be used offline:
	 Download, the device does not have a defined write protec- tion code: the download is carried out as normal
	Download, defined write protection code, device is not locked
	 The Enter access code parameter (offline) contains the correct write protection code: The download takes place and the device is not locked when the download is com- plete. The write protection code is set to 0 under the Enter access code parameter.
	 The Enter access code parameter (offline) does not con- tain the correct write protection code: The download takes place and the device is locked when the download is com- plete. The write protection code is reset to 0 under the En- ter access code parameter.
	 Download, defined write protection code, device is locked
	 The Enter access code parameter (offline) contains the correct write protection code: The download takes place and the device is locked when the download is complete. The write protection code is reset to 0 under the Enter access code parameter.
	 The Enter access code parameter (offline) does not con- tain the correct write protection code: The download does not take place. None of the values in the device are changed. The value of the Enter access code parameter (offline) is not changed either.
Input	0 to 9999
Default setting	0

NOTE!

If a value that does not correspond to the access code is entered, the parameter is automatically set to **0**. Any changes to the service parameters must be carried out by the service organization.

Access rights for operating software

Navigation	Setup > Advanced setup > Access rights for operating soft- ware
	Expert > Access rights for operating software
Description	Displays the access rights for the parameters
Additional information	If additional write protection is activated, this places further restric- tions on current access rights. Write protection can be displayed under the Locking status parameter.
Selection	Operator
	Service
Default setting	Operator

Locking status

Navigation	Setup > Advanced setup > Locking status
	Expert > Locking status
Description	Displays the status of the device lock The DIP switch for the hardware lock is attached to the display module. When write protection is active, write access to the pa- rameters is inhibited, ⇔ Page 32.

Device temperature alarm

Navigation	Setup > Advanced setup > Device temperature alarm
Description	Selects the category (status signal) for how the device responds if the temperature of the transmitter's electronics is < -40 °C or > +85 °C
Selection	 Off Outside the specification (S)
Default setting	Failure (F) Outside the specification (S)

Sensors sub-menu

Sensor offset n

NOTE!

n = Placeholder for the number of sensor inputs (1 and 2)

Navigation	Setup > Advanced Setup > Sensors > Sensor offset n
	Expert > Sensors > Sensor n > Sensor offset n
Description	Sets the zero-point correction (offset) for the sensor measured value; the specified value is added to the measured value.
Input	-10.0 to +10.0
Default setting	0.0

Corrosion detection

Navigation	Setup > Advanced Setup > Sensors > Corrosion detection
	Expert > Sensors > Diagnosis settings > Corrosion detection
Description	Selects the category (status signal) that is displayed when corro- sion is detected in the sensor connection lines
Selection	Maintenance required (M)
	Failure (F)
Default setting	Maintenance required (M)

NOTE!

Only possible for RTD sensors with 4-wire connections and thermocouples (TC).

Drift/difference monitoring

Navigation	Setup > Advanced setup > Sensors > Drift/difference moni- toring
	Expert > Sensors > Diagnosis settings > Drift/difference monitoring
Description	Selects whether the device responds if the drift/difference limit value is overrange/underrange
Additional information	 When Overrange (drift) is selected, a status signal is dis- played when the absolute value of the difference value ex- ceeds the drift/difference limit value
	 When Underrange is selected, a status signal is displayed when the absolute value of the difference value undercuts the drift/difference limit value
Selection	• Off
	Overrange (drift)
	Underrange
Default setting	Off

NOTE!

Can only be selected for 2-channel operation.

Drift/difference alarm category

Navigation	Setup > Advanced setup > Sensors > Drift/difference alarm category Expert > Sensors > Diagnosis settings > Drift/difference alarm category
Prerequisite	The parameter Drift/difference monitoring must be active with the option Overrange (Drift) or Underrange .
Description	Selects the category (status signal) for how the device responds when drift/difference is detected between sensor 1 and sensor 2.

Selection	Outside the specification (S)
	Maintenance required (M)
	Failure (F)
Default setting	Maintenance required (M)

Drift/difference alarm delay

Navigation	Setup > Advanced setup > Sensors > Drift/difference alarm delay
	Expert > Sensors > Diagnosis settings > Drift/difference alarm delay
Prerequisite	The parameter Drift/difference monitoring must be active with the option Overrange (Drift) or Underrange , ⇔ Page 79.
Description	Alarm delay for drift detection monitoring
Input	0 to 255 s
Default setting	0 s

NOTE!

Helpful, for example, when the sensors have different thermal masses in conjunction with a high temperature gradient in the process.

Drift/difference limit value

Navigation	Setup > Advanced setup > Sensors > Drift/difference limit value
	Expert > Sensors > Diagnosis settings > Drift/difference limit value
Prerequisite	The parameter Drift/difference monitoring must be active with the option Overrange (Drift) or Underrange.
Description	Selects the maximum admissible deviation in measured values between sensor 1 and sensor 2 that leads to a drift/difference being detected.
Selection	0.1 to 999.0 K
Default setting	999.0

Sensor toggle

Navigation	Setup > Advanced Setup > Sensors > Sensor toggle limit val- ue
	Expert > Sensors > Diagnosis settings > Sensor toggle limit value
Description	Selects the threshold value for sensor toggling, ⇒ Page 78
Additional information	The threshold value is relevant when the sensor toggling function is assigned to a HART® variable (PV, SV, TV, QV).
Selection	Depends on the selected sensor type
Default setting	850 °C

Current output sub-menu

Analog output calibration (4 and 20 mA current trimming)

Current trimming is used to compensate the analog output (D/A conversion). This enables the transmitter's output current to be adjusted so that this meets the expected value in the higher-level system.

NOTE!

Current trimming does not affect the digital HART® value. As a result, the measured value displayed on the plugged in display may differ slightly from the displayed value in the higher-level system. Digital measured values can be adapted with the Sensor trimming parameter in the Expert - Sensors - Sensor trimming menu.

Procedure

1.	Start
2.	Install an accurate ammeter (accuracy is higher than the transmitter) in the current loop.
3.	Switch on current output simulation and adjust the simulation value to 4 mA.
4.	Measure the loop current with the ammeter and note the result.
5.	Adjust the simulation value to 20 mA.
6.	Measure the loop current with the ammeter and note the result.
7.	Enter the measured currents as calibration values under the parameters Current trimming 4 mA and Current trimming 20 mA .
8.	End

Output current

Navigation	Setup > Advanced setup > Current output > Output current Expert > Output > Output current
Description	Displays the calculated output current in mA.

Measurement mode

Navigation	Setup > Advanced setup > Current output > Measurement mode
	Expert > Output > Measurement mode
Description	Enables the output signal to be inverted
Additional information	 Standard The output current rises as the temperature rises Inverted The output current drops as the temperature rises
Selection	StandardInverted
Default setting	Standard

Out of range category

Navigation	Setup > Advanced setup > Current output > Out of range cat- egory Expert > Output > Out of range category
Description	Selects the category (status signal) for how the device responds when the selected measuring range is breached
Selection	 Outside the specification (S) Maintenance required (M) Failure (F)
Default setting	Maintenance required (M)

Error behavior

Navigation	Setup > Advanced setup > Current output > Error behavior Expert > Output > Error behavior
Description	Selects the failure signal level that the current output emits in the event of a fault
Additional information	When Max. is selected, the failure signal level is defined by the Error current parameter.
Selection	• Min.
	• Max.
Default setting	Max.

Error current

Navigation	Setup > Advanced setup > Current output > Error current
	Expert > Output > Error current
Prerequisite	The Max. option is selected under the Error behavior parameter.
Description	Adjusts the current value that the current output emits in the event of an error.
Input	21.5 to 23.0 mA
Default setting	22.5

Current trimming 4 mA

Navigation	Setup > Advanced setup > Current output > Current trimming 4 mA
	Expert > Output > Current trimming 4 mA
Description	Adjusts the correction value for the current output at the measur- ing range start at 4 mA, ⇔"Analog output calibration (4 and 20 mA current trimming) ", Page 84
Input	3.85 to 4.15 mA
Default setting	4 mA

Current trimming 20 mA

Navigation	Setup > Advanced setup > Current output > Current trimming 20 mA
	Expert > Output > Current trimming 20 mA
Description	Adjusts the correction value for the current output at the measur- ing range start at 20 mA, ⇔ "Drift/difference monitoring ", Page 79
Input	19.850 to 20.15 mA
Default setting	20.000 mA

Display sub-menu

The "Display" menu is used to adjust settings for the measured value display on the optional plug-in display (for head transmitters only).

NOTE!

These settings do not affect the transmitter's output values. The only thing they affect is the display format on the display.

Display interval

Navigation	Setup > Advanced setup > Display > Display interval	
	Expert > System > Display > Display interval	
Description	Adjusts the period for which measured values are displayed on the on-site display if these are alternating. Alternating displays are only generated automatically if several measured values are de- fined.	
Input	4 to 20 s	
Default setting	4 s	

NOTE!

The measured values that appear on the on-site display are defined in the parameters **1st display value** to **3rd display value**, \Rightarrow Page 87.

The display format for the displayed measured values is defined in the **Display format** parameter.

Display format

Navigation	Setup > Advanced setup > Display > Display format
	Expert > System > Display > Display format
Description	Selects the measured value display on the on-site display. The measured value display format or measured value bar graph can be adjusted.
Additional information	Value
	Value + bar graph
Selection	Value
	Value + bar graph
Default setting	Value

1st display value

Navigation	Setup > Advanced setup > Display > 1st display value
	Expert > System > Display > 1st display value
Description	Selects one of the measured values displayed on the on-site display
Selection	 Process value Sensor 1 Sensor 2
	 Output current % measuring span
Default setting	Device temperature Process value

NOTE!

The **Display format** parameter is used to define how the measured values are displayed ⇒ Page 87.

Decimal places for 1st display value

Navigation	Setup > Advanced setup > Display > Decimal places for 1st display value
	Expert > System > Display > Decimal places for 1st display value
Prerequisite	A measured value has been defined for the 1st display value pa- rameter, ⇔87
Description	Selects the number of decimal places for the displayed value; this setting does not affect the accuracy of the device's measurements or calculations
Selection	 x x.x x.xx x.xxx x.xxxx x.xxxx Automatic
Default setting	Automatic

NOTE!

If **Automatic** is selected, the maximum possible number of decimal places always appears on the display.

2nd display value

Navigation	Setup > Advanced setup > Display > 2nd display value Expert > System > Display > 2nd display value
Description	Selects one of the measured values displayed on the on-site display
Selection	 Off Process value Sensor 1 Sensor 2 Output current % measuring span Device temperature
Default setting	Off

NOTE!

The Display format parameter is used to define how the measured values are displayed.

Decimal places for 2nd display value

Navigation	Setup > Advanced setup > Display > Decimal places for 2nd display value Expert > System > Display > Decimal places for 2nd display value
Prerequisite	A measured value has been defined for the 2nd display value parameter, ⇔ Page 88.

Description	Selects the number of decimal places for the displayed value; this setting does not affect the accuracy of the device's measurements or calculations
Selection	 x x.x x.xx x.xxx x.xxxx Automatic
Default setting	Automatic

NOTE!

If **Automatic** is selected, the maximum possible number of decimal places always appears on the display.

3rd display value

Navigation	Setup > Advanced setup > Display > 3rd display value
	Expert > System > Display > 3rd display value
Description	Selects one of the measured values displayed on the on-site display
Selection	 Off Process value Sensor 1 Sensor 2 Output current % measuring span Device temperature
Default setting	Off

NOTE!

The Display format parameter is used to define how the measured values are displayed.

Decimal places for 3rd display value

Navigation	Setup > Advanced setup > Display > Decimal places for 3rd display value
	Expert > System > Display > Decimal places for 3rd display value
Prerequisite	A measured value has been defined for the 3rd display value pa- rameter, ⇔ Page 89.
Description	Selects the number of decimal places for the displayed value; this setting does not affect the accuracy of the device's measurements or calculations

Selection	• x	
	• x.x	
	• x.xx	
	• x.xxx	
	• X.XXXX	
	Automatic	
Default setting	Automatic	

NOTE!

If **Automatic** is selected, the maximum possible number of decimal places always appears on the display.

SIL sub-menu

NOTE!

This menu only appears if you have ordered a device type with SIL approval. The **SIL option** parameter indicates whether the device can be operated in SIL mode. To activate SIL mode for the device, you must follow the menu-guided process for **Activate SIL**.

Please see the SIL safety manual for a detailed description of this process.

SIL option

Navigation	Setup > Advanced setup > SIL > SIL option
Description	Displays whether a device with SIL approval has been ordered
Selection	• No
	• Yes
Default setting	No

NOTE!

The SIL option is a prerequisite for the device's SIL mode.

Operating status

Navigation	Setup > Advanced setup > SIL > Operating status
Description	Displays the device's operating status in SIL mode

Selection	Check SIL option
	Startup in standard operation
	Wait for checksum
	Self-diagnosis
	Standard operation
	Download active
	SIL mode active
	Start secure parameterization
	Secure parameterization active
	Save parameter values
	Parameter check
	Restart imminent
	Reset checksum
	Safe state - Active
	Test download
	Upload active
	Safe state - Passive
	Safe state - Panic
Default setting	Check SIL option

NOTE!

When the device is restarted with the setting **SIL startup mode - Not active**, the display **Wait for check-sum** appears for this parameter. The SIL checksum must be entered manually.

Enter SIL checksum

Navigation	Setup > Advanced setup > SIL > Enter SIL checksum
Description	Enters the SIL checksum during secure parameterization and the restart process in conjunction with the parameter setting SIL startup mode - Not active
Input	0 to 65535
Default setting	0

NOTE!

When the value 0 is entered in conjunction with the parameter setting **SIL startup mode - Active**, the automatic restart process is terminated and the SIL settings are discarded.

SIL checksum

Navigation	Setup > Advanced setup > SIL > SIL checksum
Description	Displays the entered SIL checksum

NOTE!

The displayed **SIL checksum** can be used to check the device settings. If the device settings for two devices are identical, the SIL checksums are then identical as well. This can be used as a simple way to exchange devices as identical device configurations are guaranteed when the checksums are the same.

SIL configuration timestamp

Navigation	Setup > Advanced setup > SIL > SIL configuration timestamp
Description	Enters the date and time at which secure parameterization was completed or when the SIL checksum was calculated
Input	DD.MM.YYYY hh:mm
Default setting	0

NOTE!

This information is not automatically created by the device; the date and time have to be entered manually.

SIL startup mode

Navigation	Setup > Advanced setup > SIL > SIL startup mode
Description	Selects an automatic device restart in SIL mode, e.g., after a pow- er cycle (restart)
Selection	Not active
	Active
Default setting	Not active

NOTE!

The **Not active** setting requires the SIL checksum to be entered manually to be able to restart the device in SIL mode.

SIL HART® mode

Navigation	Setup > Advanced setup > SIL > SIL HART® mode
Description	Adjusts HART [®] communication during SIL mode; the setting HART [®] not active deactivates HART [®] communication in SIL mode (only 4 to 20 mA communication is active).
Selection	HART® not active HART® active
Default setting	HART® active

Force safe state

Navigation	Setup > Advanced setup > SIL > Force safe state
Prerequisite	The Operating status parameter shows SIL mode active .
Description	Tests error detection and the device's safe state during the de- vice's repeat test.
Selection	On Off
Default setting	Off

NOTE!

Please consult the SIL safety manual for a detailed description of the SIL repeat test.

Administration sub-menu

Reset device

Navigation	Setup > Advanced setup > Administration > Reset device
	Expert > System > Reset device
Description	Resets all device configurations or parts thereof to a defined state.
Selection	Not active The parameter is closed without action.
	To default settings All parameters are reset to the default settings.
	• To delivery settings All parameters are reset to the delivery settings. The delivery settings may deviate from the default settings if customer- specific parameter values were specified during the order pro- cess.
	• Restart device The device restarts without any changes to the device config- uration.
Default setting	Not active

Define write protection code

Navigation	Setup > Advanced setup > Administration > Define write pro- tection code
	Expert > System > Define write protection code
Description	Selects a device write protection code
Additional information	 Activating device write protection A value is entered into the Enter access code parameter that does not match the write protection code defined here Deactivating device write protection When device write protection is active, enter the defined write protection code under the Enter access code parameter If the device has been reset to its default settings or config- ured delivery settings, the defined write protection code is no long valid; the code changes to the default setting (0) Hardware write protection described here. The hardware write protection described here. No values can be entered under the Enter access code parameter; the parameter is read-only. The device write protection function cannot be defined and activated using software until the hardware write pro- tection lock has been deactivated using the DIP switch, =>84.
Input	0 to 9999
Default setting	0

NOTE!

If the code is stored in the device firmware, this code is saved in the device and the operating tool displays the value 0 to make sure the defined write protection code is not freely readable.

NOTE!

The device write protection function is not active if the device is delivered with the default settings.

NOTE!

If you have forgotten the write protection code, it can be deleted or overwritten by the service organization.

14.3 Menu: Diagnostics

Any information that describe the device, the device status, and the process conditions can be found in this group.

Current diagnosis 1

Navigation	Diagnosis > Current diagnosis
	Expert > Diagnosis > Current diagnosis
Description	Displays the current diagnosis message; if multiple messages oc- cur at the same time, only the message with the highest priority is displayed
Additional information	Example for the display format: F261 electronics module
Display	Symbol for event response and diagnostic event

Remedy

When an error occurs, the remedy appears as a "Tooltip" at the end of the pointer when you move the pointer to the error code (e.g., "F043 short-circuit").

Navigation	Diagnosis > Remedy Expert > Diagnosis > Remedy
Description	Displays the remedy for the current diagnosis message

Last diagnosis 1

Navigation	Diagnosis > Last diagnosis 1
	Expert > Diagnosis > Last diagnosis 1
Description	Displays the most recent diagnosis message with the highest pri- ority
Additional information	Example for the display format: F261 electronics module
Display	Symbol for event response and diagnostic event

Operating time

Navigation	Diagnosis > Operation time
	Expert > Diagnosis > Operation time
Description	Displays the length of time for which the device has been running until the current point in time
Display	Hours (h)

14.3.1 "Diagnosis list" sub-menu

This sub-menu shows up to three of the most recent diagnosis messages. If more than three messages occur at the same time, the three with the highest priority are displayed.

Information on the device's diagnosis mechanisms and all diagnosis messages at a glance: ⇒ chapter 11 "Diagnosis and troubleshooting", Page 41.

Number of current diagnosis messages

Navigation	Diagnosis > Diagnosis list > Number of current diagnosis messages Expert > Diagnosis > Diagnosis list > Number of current di- agnosis messages
Description	Displays the number of diagnosis messages currently in place in the device

Current diagnosis

Navigation	Diagnosis > Diagnosis list > Current diagnosis Expert > Diagnosis > Diagnosis list > Current diagnosis
Description	Displays the most recent diagnosis messages with the highest to the third highest priority
Additional information	Example for the display format: F261 electronics module
Display	Symbol for event response and diagnostic event

Current diagnosis channel

Navigation	Diagnosis > Diagnosis list > Current diagnosis channel	
	Expert > Diagnosis > Diagnosis list > Current diagnosis channel	
Description	Displays the sensor input to which the diagnosis message applies	
Display	Sensor 1 Sensor 2	
	•	

14.3.2 "Event log" sub-menu

NOTE!

n = Number of diagnosis messages (n = 1 to 5)

Last diagnosis n

Navigation	Diagnosis > Diagnosis list > Last diagnosis n
	Expert > Diagnosis > Diagnosis list > Last diagnosis n
Description	Displays diagnosis messages that occurred in the past; the last five messages are listed in chronological order
Additional information	Example for the display format: F261 electronics module
Display	Symbol for event response and diagnostic event

Last diagnosis channel

Navigation	Diagnosis > Diagnosis list > Last diagnosis channel
	Expert > Diagnosis > Diagnosis list > Last diagnosis channel
Description	Displays the possible sensor input to which the diagnosis mes- sage applies
Display	Sensor 1
	Sensor 2
	•

14.3.3 "Device information" sub-menu

Measuring point identifier

Navigation	Setup > Measuring point identifier Diagnosis > Device information > Measuring point identifier Expert > Diagnosis > Device information > Measuring point identifier
Description	Specifies a unique identifier for the measuring point so that it can be quickly identified in the plant; it is displayed in the header of the plug-in display, ⇔chapter 6.3 "Measured value display and oper- ating elements", Page 31
Input	Max. 32 characters, such as letters, numbers, or special characters (e.g., $@$, %, /)
Default setting	None

Serial number

Navigation	Diagnosis > Device information > Serial number
	Expert > Diagnosis > Device information > Serial number
Description	Displays the device's serial number; it is located on the nameplate
Display	Max. 11 characters made up of letters and numbers.

NOTE!

The serial number is a useful way to quickly identify the device, e.g., when contacting the manufacturer.

Firmware version

Navigation	Diagnosis > Device information > Firmware version
	Expert > Diagnosis > Device information > Firmware version
Description	Shows the device firmware version installed
Display	Sequence of max. 6 digits in the format xx.yy.zz.

Device name

Navigation	Diagnosis > Device information > Device name
	Expert > Diagnosis > Device information > Device name
Description	Displays the device name; it is located on the nameplate

Order code

Navigation	Diagnosis > Device information > Order code
	Expert > Diagnosis > Device information > Order code
Description	This function is not used at this time.

Configuration counter

Navigation	Diagnosis > Device information > Configuration counter
	Expert > Diagnosis > Device information > Configuration counter
Description	Displays the counter status for changes to device parameters

NOTE!

Static parameters whose values change during optimization or configuration adjust the incrementation of this parameter by 1. This supports parameter version management. When adjusting multiple parameters, e.g., by loading PACTWare™ parameters onto the device, the counter may display a higher value. The counter can never be reset and is not reset to a default value, even after a device reset. If the counter exceeds (16 bit), it starts from 1 again.

14.3.4 "Measured values" sub-menu

NOTE!

n = Placeholder for the number of sensor inputs (1 and 2)

Value sensor n

Navigation	Diagnosis > Measured values > Value sensor n
	Expert > Diagnosis > Measured values > Value sensor n
Description	Displays the current measured value for the sensor input in ques-
	tion

Device temperature

J J	Diagnosis > Measured values > Device temperature Expert > Diagnosis > Measured values > Device temperature
Description	Displays the current electronics temperature

"Min./max.values" sub-menu

Sensor n min. value

Navigation	Diagnosis > Measured values > Min./max. values > Sensor n min. value
	Expert > Diagnosis > Measured values > Min./max. values > Sensor n min. value
Description	Displays the minimum temperature measured in the past at sen- sor input 1 or 2 (drag indicator)

Sensor n max. value

Navigation	Diagnosis > Measured values > Min./max. values > Sensor n max. value Expert > Diagnosis > Measured values > Min./max. values > Sensor n max. value
Description	Displays the minimum temperature measured in the past at sen- sor input 1 or 2 (drag indicator)

Reset min./max. sensor values

Navigation	Diagnosis > Measured values > Min./max. values > Reset min./max. sensor values Expert > Diagnosis > Measured values > Min./max. values >
	Reset min./max. sensor values
Description	Resets the drag indicator for the minimum and maximum tem- peratures measured at the sensor inputs
Selection	• No
	• Yes
Default setting	No

Min. device temperature

Navigation	Diagnosis > Measured values > Min./max. values > Min. de- vice temperature
	Expert > Diagnosis > Measured values > Min./max. values > Min. device temperature
Description	Displays the minimum electronics temperature measured in the past (drag indicator)

Max. device temperature

Navigation	Diagnosis > Measured values > Min./max. values > Max. de- vice temperature Expert > Diagnosis > Measured values > Min./max. values > Max. device temperature
Description	Displays the maximum electronics temperature measured in the past (drag indicator)

Reset min./max. device temperature

Navigation	Diagnosis > Measured values > Min./max. values > Reset min./max. device temp.
	Expert > Diagnosis > Measured values > Min./max. values > Reset min./max. device temp.
Description	Resets the drag indicator for the minimum and maximum elec- tronics temperatures measured
Selection	No Yes
Default setting	No

14.3.5 "Simulation" sub-menu

Current output simulation

Navigation	Diagnosis > Simulation > Current output simulation
	Expert > Diagnosis > Simulation > Current output simulation
Description	Switches the current output simulation on and off; when simula- tion is active, the display alternates between the measured value and a diagnostic message from the functional control category (C)
Additional information	The required simulation value is defined in the Current output value parameter.
Display	Measured value display - C491 (current output simulation)
Selection	Off On
Default setting	Off

Current output value

Navigation	Diagnosis > Simulation > Current output value
	Expert > Diagnosis > Simulation > Current output value
Description	Selects a current value for the simulation; this can be used to check that the current output has been adjusted correctly and that the downstream evaluation devices are working properly
Additional information	The option On must be selected for the Current output simula- tion parameter.
Input	3.59 to 23.0 mA
Default setting	3.59

14.4 Menu: Expert

NOTE!

The parameter groups for Expert setup contain all parameters in the operating setup and diagnosis menus, and additional parameters that are reserved exclusively for experts. This chapter describes all additional parameters. All basic parameter settings for startup and diagnosis evaluation of the transmitter are described in the chapters **"Setup" menu**, \Rightarrow 75, and **"Diagnosis" menu** \Rightarrow 94.

14.4.1 "System" sub-menu

Attenuation

Navigation	Expert > System > Attenuation
Description	Selects the time constant for the attenuation of the current output
Additional information	Fluctuating measured values affect the current output with an exponential delay, the time constant for which is specified by this parameter. If the time constant is low, the current output follows quickly on from the measured value; if the constant is high, the output is delayed.
Input	0 to 120 s
Default setting	0.00 s

Alarm delay

Navigation	Expert > System > Alarm delay
Description	Selects the delay time period applied to the diagnosis signal be- fore it is emitted
Input	0 to 5 s
Default setting	2 s

Mains frequency filter

Navigation	Expert > System > Mains frequency filter
Description	Selects the mains filter for A/D conversion
Selection	• 50 Hz
	• 60 Hz
Default setting	50 Hz

Device temperature alarm

Navigation	Expert > System > Device temperature alarm
Description	⇔Page 81

"Display" sub-menu

⇔Page 86

"Administration" sub-menu

⇔Page 93

14.4.2 "Sensors" sub-menu

Sensor 1/2 sub-menu

NOTE!

n = Placeholder for the number of sensor inputs (1 and 2)

Lower sensor limit n

Navigation	Expert > Sensors > Sensor n > Lower sensor limit n
Description	Displays the minimum physical end of the measuring range

Upper sensor limit n

Navigation Ex	Expert > Sensors > Sensor n > Upper sensor limit n
Description	Displays the maximum physical end of the measuring range

Sensor serial number

Navigation	Expert > Sensors > Sensor n > Sensor serial number
Description	Displays the serial number for the connected sensor

Input	Number and text-based entry up to 12 characters long
Default setting	"_" (No text)

"Sensor trimming" sub-menu

Sensor error calibration (sensor trimming)

Sensor trimming is used to adjust the actual sensor signal to the linearization of the selected sensor type stored in the transmitter. In contrast to sensor/transmitter matching, sensor trimming is only performed for the start and end values and therefore does not achieve the same level of accuracy.

NOTE!

Sensor trimming is not used to adjust the measuring range but instead adjusts the sensor signal to the linearization stored in the transmitter.

Procedure

1.	Start
2.	Select the Customer-specific option for the Sensor trimming parameter.
3.	Use a water/oil bath or furnace to bring the sensor connected to the transmitter up to a familiar and stable temperature. We recommend selecting a temperature close to the selected measuring range start.
4.	Enter the reference temperature for the value at the measuring range start under the Sensor trimming start value parameter. Using the difference between the specified reference tempera- ture and the temperature actually measured at the input, the transmitter internally calculates a correction factor that is then used for the linearization of the input signal.
5.	Use a water/oil bath or furnace to bring the sensor connected to the transmitter up to a familiar and stable temperature close to the selected measuring range end.
6.	Enter the reference temperature for the value at the measuring range end under the Sensor trimming end value parameter.
7.	End

Sensor trimming

Navigation	Expert > Sensors > Sensor n > Sensor trimming > Sensor trimming
Description	Selects which linearization method is used for the connected sen- sor
Selection	Default settingCustomer-specific
Default setting	Default setting

NOTE!

Resetting this parameter to the **Default setting** option enables you to restore the original linearization.

Sensor trimming start value

Navigation	Expert > Sensors > Sensor n > Sensor trimming > Sensor trimming start value
Prerequisite	The Customer-specific option is active under the Sensor trim- ming parameter, ⇔Page 101

Description	Lower point for linear characteristic line calibration (this affects off- set and slope)
Input	Depends on the selected sensor type and the assignment for the current output (PV)
Default setting	-200 °C

Sensor trimming end value

Navigation	Expert > Sensors > Sensor n > Sensor trimming > Sensor trimming end value
Prerequisite	The Customer-specific option is active under the Sensor trim- ming parameter, ⇔Page 101
Description	Upper point for linear characteristic line calibration (this affects off- set and slope)
Input	Depends on the selected sensor type and the assignment for the current output (PV)
Default setting	850 °C

Sensor trimming min. span

Navigation	Expert > Sensors > Sensor n > Sensor trimming > Sensor trimming min. span
Prerequisite	The Customer-specific option is active under the Sensor trim- ming parameter, ⇔Page 101
Description	Displays the minimum possible span between the sensor trim- ming start and end values

"Linearization" sub-menu

Procedure for adjusting linearization using Callendar/Van-Dusen coefficients specified in calibration certificate

1.	Start
2.	Assign current output (PV) = Adjust sensor 1 (measured value)
3.	Select a unit.
4.	Select the sensor type (linearization type) "RTD platinum (Callendar/Van-Dusen)".
5.	Select a connection type, e.g., 3-wire.
6.	Select lower and upper sensor limits.
7.	Enter the four coefficients A, B, C, and R0.
8.	If special linearization is used for a second sensor, repeat steps 2 to 6.
9.	End

Lower sensor limit n

Navigation	Expert > Sensors > Sensor n > Linearization > Lower sensor limit n
Prerequisite	The option RTD Platinum, RTD Poly Nickel, or RTD Polynomial Copper is active under the Sensor type parameter.
Description	Adjusts the lower calculation limit for special sensor linearization
Input	Depending on the sensor type selected

Default actting	300 °C
Default setting	-200 C

Upper sensor limit n

Navigation	<i>Expert</i> > Sensors > Sensor <i>n</i> > Linearization > Upper sensor limit <i>n</i>
Prerequisite	The option RTD Platinum, RTD Poly Nickel, or RTD Polynomial Copper is active under the Sensor type parameter.
Description	Adjusts the lower calculation limit for special sensor linearization
Input	Depending on the sensor type selected
Default setting	850 °C

Call./v. Dusen coeff. R0

Navigation	Expert > Sensors > Sensor n > Linearization > Call./v. Dusen coeff. R0
Prerequisite	The option RTD Platinum (Callendar/Van-Dusen) is active under the Sensor type parameter.
Description	Adjusts the R0 value for linearization according to the Callendar/ Van-Dusen method
Input	40.000 to 1050.000
Default setting	100.000 Ohm

Call./v. Dusen coeff. A, B, and C

Navigation	Expert > Sensors > Sensor n > Linearization > Call./v. Dusen coeff. A, B, C
Prerequisite	The option RTD Platinum (Callendar/Van-Dusen) is active under the Sensor type parameter.
Description	Adjusts the coefficients for linearization according to the Callen- dar/Van-Dusen method
Default setting	 A: 3.910000e-003 B: -5.780000e-007
	 C: -4.180000e-012

Polynomial coeff. R0

Navigation	<i>Expert</i> > Sensors > Sensor n > Linearization > Polynomial co- eff. R0
Prerequisite	The option RTD Poly Nickel or RTD Polynomial Copper is active under the Sensor type parameter.
Description	Adjusts the R0 value for the linearization of copper/nickel RTD temperature probes
Input	40.000 to 1050.000 Ohm
Default setting	100.00 Ohm

Polynomial coeff. A, B

Navigation	Expert > Sensors > Sensor n > Linearization > Polynomial co- eff. A, B
Prerequisite	The option RTD Poly Nickel or RTD Polynomial Copper is active under the Sensor type parameter.
Description	Adjusts the coefficients for the linearization of copper/nickel RTD temperature probes

Default setting	Polynomial coeff. A = 5.49630e-003
	Polynomial coeff. B = 6.75560e-006

"Diagnosis settings" sub-menu

Calibration counter start

Navigation	Expert > Sensors > Diagnosis settings > Calibration counter start
Description	Manages the calibration counter
Selection	Off: Stops the calibration counter
	On: Starts the calibration counter
	Reset + start: Resets to the selected start value and starts the calibration counter
Default setting	Off

NOTE!

The countdown length (in days) is defined with the **Calibration counter start value** parameter. The status signal used when the limit value is reached is defined with the parameter **Calibration counter alarm category**.

Calibration counter alarm category

Navigation	Expert > Sensors > Diagnosis settings > Calibration counter alarm category
Description	Selects the category (status signal) for how the device responds when the selected calibration countdown has expired
Selection	Maintenance required (M)
	Failure (F)
Default setting	Maintenance required (M)

Calibration counter start value

Navigation	Expert > Sensors > Diagnosis settings > Calibration counter start value
Description	Selects the start value for the calibration counter
Input	0 to 365 days
Default setting	365

Calibration countdown

Navigation	Expert > Sensors > Diagnosis settings > Countdown to cali- bration
Description	Displays the remaining time left until the next calibration

NOTE!

The calibration countdown counter only runs when the device is active. Example: If the calibration counter was set to 365 days on January 1, 2017 and the device has been without power for 100 days, the calibration alarm would appear on April 11, 2018.

14.4.3 "Output" sub-menu

Measurement mode

Navigation	Expert > Output > Measurement mode
Description	Enables the output signal to be inverted
Additional information	 Standard The output current rises as the temperature rises Inverted The output current drops as the temperature rises
Selection	Standard Inverted
Default setting	Standard

14.4.4 "Communication" sub-menu

HART® configuration sub-menu

Measuring point identifier

Navigation	Diagnosis > Device information > Measuring point identifier
	Expert > Communication > HART® configuration > Measur- ing point identifier
Description	⇔Page 96

Mark instr.

Navigation	Expert > Communication > HART® configuration > Mark instr.
Description	Defines a brief description for the measuring point
Input	Up to 8 alpha-numerical characters (letters, numbers, special characters)
Default setting	SHORTTAG

HART® address

Navigation	Expert > Communication > HART® configuration > HART® address
Description	Defines the device's HART® address
Additional information	Measured values can only be transmitted over the current value when the address is 0. The current is fixed at 4.0 mA for all other addresses (multidrop mode).
Input	0 to 63
Default setting	0

Preamble number

Navigation	Expert > Communication > HART® configuration > Preamble number
Description	Defines the preamble number in the HART® telegram
Input	2 to 20
Default setting	5

Configuration changed

Navigation	<i>Expert > Communication > HART</i> ® configuration > Configuration ration changed
Description	Displays whether the device configuration has been changed by a master (primary or secondary)

Reset configuration changed flag

Navigation	Expert > Communication > HART® configuration > Reset configuration changed flag
Description	Resets the information Configuration changed by a master (pri- mary or secondary)

"HART® info" sub-menu

Device type

Navigation	Expert > Communication > HART® info > Device type
Description	Displays the device type under which the device is registered with the FieldComm Group [™] . The device type is issued by the manufacturer. It is needed to assign the device to the corresponding device description file (DD).
Display	4-digit hexadecimal figure (may be transcoded in device names by DD/DTM).
Default setting	0xE389 (JUMO dTRANS T07)

Device revision

Navigation	Expert > Communication > HART® info > Device revision
Description	Displays the device revision under which the device is registered with the FieldComm Group [™] . It is needed to assign the device to the corresponding device description file (DD).
Default setting	2

Manufacturer ID

Navigation	Expert > Communication > HART® info > Manufacturer ID
	Expert > Diagnosis > Device information > Manufacturer ID
Description	Displays the manufacturer ID under which the device is registered with the FieldComm Group™.
Display	5-digit decimal figure
Default setting	24716

HART® revision

Navigation	Expert > Communication > HART® info > HART® revision
Description	Displays the device's HART® revision

Description

Navigation	Expert > Communication > HART® info > Description
Description	Defines a description for the measuring point
Input	Up to 32 alpha-numerical characters (letters, numbers, special characters)
Default setting	The corresponding device name

Message

Navigation	Expert > Communication > HART® info > Message
Description	Defines a HART® message that is sent via the HART® protocol when requested by the master
Input	Up to 32 alpha-numerical characters (letters, numbers, special characters)
Default setting	The corresponding device name

Hardware revision

Navigation	Expert > Diagnosis > Device information > Hardware revision
	Expert > Communication > HART® info > Hardware revision
Description	Displays the device's hardware revision

SWRev

Navigation	Expert > Communication > HART® info > SWRev
Description	Displays the device's software revision

Date

Navigation	Expert > Communication > HART® info > Date
Description	Defines a piece of date-based information for individual use
Input	Date in the format of year-month-day (YYYY-MM-DD)
Default setting	2010-01-01

"HART® output" sub-menu

Assign current output (PV)

Navigation	<i>Expert > Communication > HART</i> ® <i>output > Assign current</i> <i>output (PV)</i>
Description	Assigns a measurand to the first HART® value (PV)

Selection	Sensor 1 (measured value)
	Sensor 2 (measured value)
	Device temperature
	 Average of both measured values: 0.5 × (SV1 + SV2)
	 Difference between sensor 1 and sensor 2: SV1 - SV2
	 Sensor 1 (backup sensor 2): When sensor 1 fails, the value from sensor 2 automatically becomes the first HART® value (PV): Sensor 1 (OR-sensor 2)
	 Sensor toggle: When the selected threshold value T for sensor 1 is exceeded, the measured value from sensor 2 becomes the first HART® value (PV); the system switches back to sensor 1 when the measured value from sensor 1 is at least 2 K below T: sensor 1 (sensor 2, if sensor 1 > T)
	 Average value: 0.5 × (SV1 + SV2) with backup (measured value from sensor 1 or sensor 2 in the event of a sensor error in the other sensor)
Default setting	Sensor 1

NOTE!

The threshold value can be adjusted with the **Sensor toggle limit value** parameter. Temperature-dependent toggling allows two sensors to be combined with advantages for various temperature ranges.

PV

Navigation	Expert > Communication > HART® output > PV
Description	Displays the first HART® value

Assign SV

Navigation	Expert > Communication > HART® output > Assign SV
Description	Assigns a measurand to the second HART® value (SV)
Selection	See parameter Assign current output (PV), ⇔Page 107
Default setting	Device temperature

SV

Navigation	Expert > Communication > HART® output > SV
Description	Displays the second HART® value

Assign TV

Navigation	Expert > Communication > HART® output > Assign TV
Description	Assigns a measurand to the third HART® value (TV)
Selection	See parameter Assign current output (PV) , ⇔Page 107
Default setting	Sensor 1

ΤV

Navigation	Expert > Communication > HART® output > TV
Description	Displays the third HART® value

Assign QV

Navigation	Expert > Communication > HART® output > Assign QV
Description	Assigns a measurand to the fourth HART® value (QV)
Selection	See parameter Assign current output (PV), ⇔Page 107
Default setting	Sensor 1

QV

Navigation	Expert > Communication > HART® output > QV
Description	Displays the fourth HART® value

"Burst configuration" sub-menu

Burst mode

Navigation	Expert > Communication > Burst configuration > Burst mode
Description	Activates HART® burst mode for burst message X, message 1 has highest priority, message 2 second-highest, etc.
Selection	Off The device only sends data to the bus when requested by a HART® master
	 On The device sends data to the bus on a regular basis without being requested to do so
Default setting	Off

Burst command

Navigation	Expert > Communication > Burst configuration > Burst com- mand
Prerequisite	This parameter can only be selected when the Burst mode option is active.
Description	Selects the command whose response is sent to the HART® master when burst mode is active
Additional information	Commands 1, 2, 3, and 9 are universal HART® commands. Com- mand 33 is a common practice HART® command. Details on these commands are defined in the HART® specifications.
Selection	 Command 1 Extract the primary variable Command 2 Extract the current and the main measured value as a percentage Command 3 Extract the dynamic HART® variable and the current Command 9 Extract the dynamic HART® variable including the associated status Command 33 Extract the dynamic HART® variable including the associated unit
Default setting	Command 2

Burst variable n

Navigation	Expert > Communication > Burst configuration > Burst vari- able n
Prerequisite	This parameter can only be selected when the Burst mode option is active.
Description	Assigns a measurand to slots 0 to 3
Selection	 Sensor 1 (measured value) Sensor 2 (measured value) Device temperature
	 Average of both measured values: 0.5 × (SV1 + SV2) Difference between sensor 1 and sensor 2: SV1 - SV2 Sensor 1 (backup sensor 2): When sensor 1 fails, the value from sensor 2 automatically becomes the first HART® value (PV): Sensor 1 (OR-sensor 2)
	 Sensor toggle: When the selected threshold value T for sensor 1 is exceeded, the measured value from sensor 2 becomes the first HART® value (PV); the system switches back to sensor 1 when the measured value from sensor 1 is at least 2 K below T: sensor 1 (sensor 2, if sensor 1 > T)
	 Average value: 0.5 × (SV1 + SV2) with backup (measured value from sensor 1 or sensor 2 in the event of a sensor error in the other sensor)
Default setting	Burst variable 0: Sensor 1
	Burst variable 1: Device temperature
	Burst variable 2: Sensor 1
	Burst variable 3: Sensor 1

NOTE!

This assignment is only relevant for burst mode. The measurands are assigned to the four HART® variables (PV, SV, TV, QV) in the menu **HART**® **output**, \Rightarrow Page 107.

NOTE!

The threshold value can be adjusted with the **Sensor toggle limit value** parameter. Temperature-dependent toggling allows two sensors to be combined with advantages for various temperature ranges.

NOTE!

n = Number of burst variables 0 to 3

Burst trigger mode

Navigation	<i>Expert > Communication > Burst configuration > Burst trig-</i> <i>ger mode</i>
Prerequisite	This parameter can only be selected when the Burst mode option is active.

Description	Selects the event triggered by burst message X:
	 Continuous dThe message is triggered in a time-controlled manner but, at the very least, in accordance with the time span specified in the parameter "Burst min. time span X" Interval dThe message is triggered when the defined measured value changes by the value specified in the parameter "Burst trigger value X"
	 Rising dThe message is triggered when the defined measured value exceeds the value specified in the parameter "Burst trigger value X"
	 Falling dThe message is triggered when the defined measured value undercuts the value specified in the parameter "Burst trigger value X"
	 When changed dThe message is triggered when any measured value chang- es the message
Selection	Continuous
	Interval
	Rising
	• Falling
	When changed
Default setting	Continuous

Burst trigger value

Navigation	<i>Expert > Communication > Burst configuration > Burst trig-</i> <i>ger value</i>
Prerequisite	This parameter can only be selected when the Burst mode option is active.
Description	Specifies the value that defines the time of burst message 1 in conjunction with the trigger mode; this value determines the time of the message.
Input	-10000 to +10000
Default setting	-10000

Burst min. time frame

Navigation	Expert > Communication > Burst configuration > Burst min. time frame
Prerequisite	This parameter can only be selected when the Burst mode option is active.
Description	Specifies the minimum time span between two burst commands from burst message X; the data is specified in the unit of 1/32 of a millisecond.
Input	500 to [value specified for the maximum time span under the parameter Burst max. time frame] as whole numbers
Default setting	1000

Burst max. time frame

Navigation	<i>Expert > Communication > Burst configuration > Burst max.</i> <i>time frame</i>
Prerequisite	This parameter can only be selected when the Burst mode option is active.
Description	Specifies the maximum time span between two burst commands from burst message X; the data is specified in the unit of 1/32 of a millisecond.
Input	[Value specified for the minimum time span under the parameter Burst min. time frame] to 3,600,000 as whole numbers
Default setting	2000

14.4.5 "Diagnosis" sub-menu

"Diagnosis list" sub-menu

Detailed description ⇒Page 95

"Event log" sub-menu

Detailed description ⇒Page 95

"Device information" sub-menu

Advanced order code 1 to 3

Navigation	Expert > Diagnosis > Device information > Advanced order code 1 to 3
Description	This parameter is not used for this device.

ENP version

Navigation	Expert > Diagnosis > Device information > ENP version
Description	Displays the version of the electronic nameplate
Display	6-digit number in the format xx.yy.zz.

Device revision

Navigation	Expert > Diagnosis > Device information > Device revision
	Expert > Communication > HART® info > Device revision
Description	Displays the device revision under which the device is registered with the FieldComm Group [™] . It is needed to assign the device to the corresponding device description file (DD).

Manufacturer ID

Navigation	Expert > Communication > HART® info > Manufacturer ID
	Expert > Diagnosis > Device information > Manufacturer ID

Manufacturer

Navigation	Expert > Diagnosis > Device information > Manufacturer
Description	Displays the manufacturer's name

Hardware revision

Navigation	Expert > Diagnosis > Device information > Hardware revision Expert > Communication > HART® info > Hardware revision
Description	Displays the device's hardware revision

"Measured values" sub-menu

NOTE!

n = Placeholder for sensor inputs (1 or 2)

Sensor n raw value

Navigation	Expert > Diagnosis > Measured values > Sensor n raw value
Description	Displays the non-linearized mV/Ohm value at the corresponding
	sensor input

Min./max.values sub-menu

Detailed description ⇒Page 97

Simulation sub-menu

Detailed description on page 99

				More than	More than sensors 4 automation	
产品组別 Product group: 707080- 81-82-83-84-85-86-87-88 部ル々 が	ch	ina EEP H	品中有害物 azardous (产品中有害物质的名称及含量 China EEP Hazardous Substances Information	长含量 s Informati	uo
車竹七台 例 Component Name						
	铅 (Pb)	汞 (Hg)	領 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
外売 Housing (Gehäuse)	X	0	0	0	0	0
过程连接 Process connection (Prozessanschluss)	X	0	0	0	0	0
螺母 Nuts (Mutter)	0	0	0	0	0	0
螺栓 Screw (Schraube)	0	0	0	0	0	0
本表格依据SJ/T 11364的规定编制。 This table is prepared in accordance with the provisions SJ/T 11364. ○:表示该有害物质在该部件所有均质材料中的含量均在GB/T 26572规定的限量要求以下。 Indicate the hazardous substances in all homogeneous materials' for the part is below the limit of the GB/T 26572.	≅编制。 cordance with 牛所有均质材∜ stances in all	n the provisior 科中的含量均的 homogeneou	ns SJ/T 1136 在GB/T 2657 Is materials' f	4. 2规定的限量要 or the part is t	更求以下。 pelow the limi	t of the GB/T
×:表示该有害物质至少在该部件的某一均质材料中的含量超出GB/T 26572规定的限量要求。 Indicate the hazardous substances in at least one homogeneous materials' of the part is exceeded the limit of the GB/T 26572.	亥部件的某一 ⁵ stances in at	匀质材料中的1 least one hon	含量超出GB/ nogeneous m	T 26572规定的 laterials' of the	b限量要求。 e part is exce	eded the limit

JUMO GmbH & Co. KG

Street address: Moritz-Juchheim-Straße 1 36039 Fulda, Germany

Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany

Postal address: 36035 Fulda, Germany

Phone:	+49 661 6003-0
Fax:	+49 661 6003-607
Email:	mail@jumo.net
Internet:	www.jumo.net

JUMO Instrument Co. Ltd.

JUMO House Temple Bank, Riverway Harlow, Essex, CM20 2DY, UK Phone: +44 1279 63 55 33 Fax: +44 1279 62 50 29 Email: sales@jumo.co.uk Internet: www.jumo.co.uk

JUMO Process Control, Inc.

6724 Joy Road East Syracuse, NY 13057, USA

Phone:	+1 315 437 5866
Fax:	+1 315 437 5860
Email:	info.us@jumo.net
Internet:	www.jumousa.com

