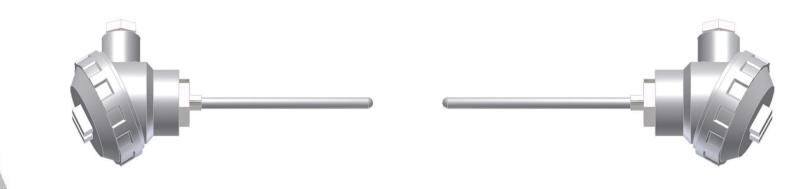
TEMPERATURE SENSORS

Identification and Selection



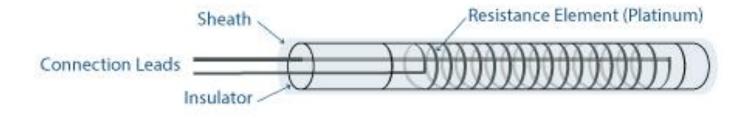
Main temperature sensors used in the industry

• RTD

Thermocouples

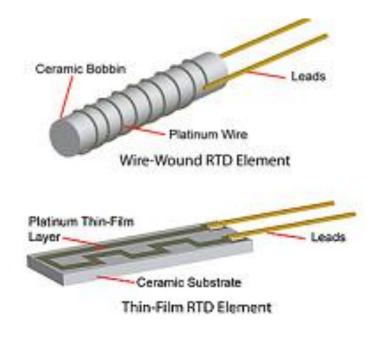
Which one to use? RTD or Thermocouple (T/C)?

Factors:


- Temperature Range
- Response Time
- Size & Shape
- Overall accuracy requirements

RTD – What is it?

Resistance Temperature Detector (RTD)


Platinum wire of a known dimension encased in ceramic or glass. Reacts by change of resistance when exposed to temperature and is linear in its behaviour.

Types of RTD

Pt100 = 1000 hms resistance at 0° C. **Pt1000** = 10000 hms resistance at 0° C.

Pt for Platinum.

RTD-Features

Advantages

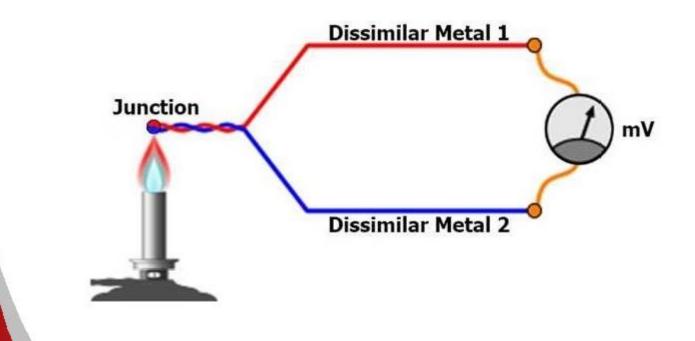
- Simple construction
- Stable
- Repeatability
- Accurate to 0.1 of a degree
- Works well in the temperature range of -200°C to 400°C

Limitations

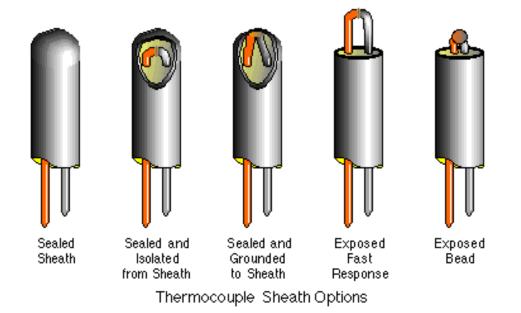
- Fragile
- Slower response time
- Needs to be in a protective sheath

Accuracy Classes

Class A & Band 5 held in stock Class B is available but Class A is standard


RTD - Tolerance Table

Equiv	alent To	olerances @	0°C	
DIN/EC Class B	±.12%	0.12 Ohm	0.30 °C	0.54°F
SDI Band 1	±.10%	0.100 Ohm	0.26 °C	0.47°F
1/2 DIN/EC Class A	±.06%	0.06 Ohm	0.15 °C	0.23°F
SDI Band 2	±.05%	0.050 Ohm	0.13 °C	0.23°F
1/3 DIN/EC	±.04%	0.04 Ohm	0.10 °C	0.18°F
SDI Band 3	±.03%	0.030 Ohm	0.08 °C	0.14°F
1/5 DIN/EC	±.02%	0.024 Ohm	0.06 °C	0.11°F
SDI Band 4	±.02%	0.020 Ohm	0.05 °C	0.09°F
1/10 DIN/EC	±.01%	0.012 Ohm	0.03 °C	0.05°F
SDI Band 5	±.01%	0.010 Ohm	0.03 °C	0.05°F


Thermocouple – What is it?

Two different particular metals when junctioned together and exposed to heat generate a millivolt reading that is linear in behaviour in relation to the heat it is exposed to.

Sheath Options for Thermocouples

Different options for tip as shown. Isolated or bonded junction inside the sheath or an exposed bead with no sheath are standard "in stock" items.

Thermocouple - Features

Advantages


- Higher Temperature ranges
- Cheaper
- Durable
- Fast response time

Limitations

- Not as accurate
- Less stability in the reading
- Require different types for different temperature ranges

Grades

- Thermocouple Grade
- Extension Grade

Thermocouples Types

Common Types: K, J, T

Less Common: B, E, R, N, S

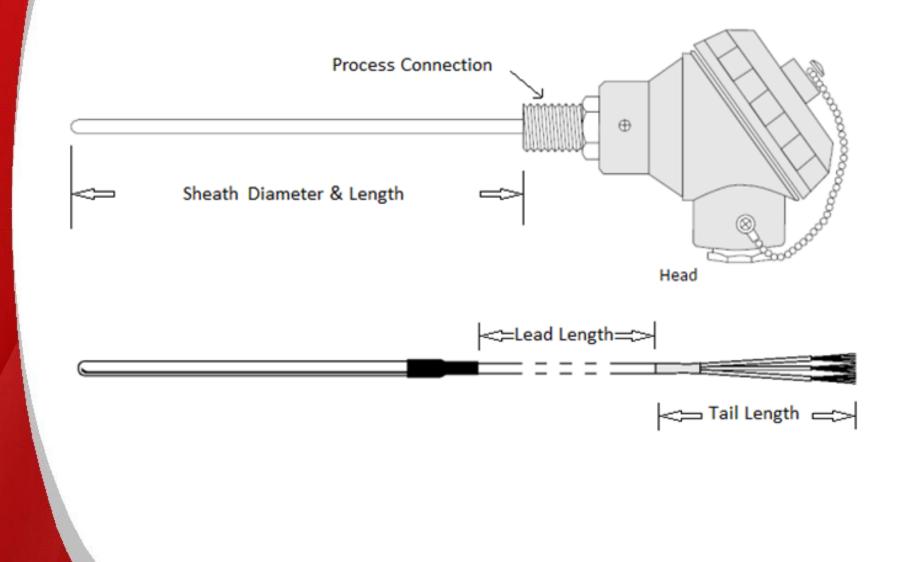
Rare: C, D, U, G, L, M, V, P

Each Type is colour coded to a international standard so that you can tell them apart.

Thermocouples Colour Codes

ANSI Code	ANSI MC 96.1	Color Coding	Alloy C	Alloy Combination		EMF(mv)Over	IEC 584-3	IEC Code
And Code	Thermocouple	Extension	+Lead	- Lead	Grand temp. range	Max.temp.range	Color Coding	IEC Code
к		E	NICKEL- CHROMIUM Ni-Cr	NICKEL- ALUMINIUM Ni-AI	-270 to 1372 °C -454 to 2501 °F	-8.458 to 54.888	Canal State	к
J	(Ê	IRON Fe (magnetic)	CONSTANTAN COPPER- NICKEL Cu-Ni	-210 to 1200°C -346 to 2193°F	-8.095 to 69.553	C.	J
		(jet)	COPPER Cu	CONSTANTAN COPPER- NICKEL Cu-Ni	-270 to 400°C -454 to 752°F	-8.258 to 20.872	Can-	т
Е	(F	(jet)	NICKEL- CHROMIUM Ni-Cr	CONSTANTAN COPPER- NICKEL Cu-Ni	-270 to 1000°C -454 to 1832°F	-9.835 to 76.373	C:	E
Ν	(je:	Cet.	NICROSIL Ni-Cr-Si	NISIL Ni-Si-Mg	-270 to 1300°C -450 to 2372°F	-4.345 to 47.513	(Be	N
S	NONE ESTABLISHED	(F	PLATINUM- 10% RHODIUM Pt-10%Rh	PLATINUM Pt	-50 to 1768 0 -58 to 3214 F	-0.236 to 18.693	Const.	s
R	NONE ESTABLISHED	(File)	PLATINUM- 13% RHODIUM Pt-13%Rh	PLATINUM Pt	-50 to 1768°C -58 to 3214°F	-0.226 to 21.101	Cart and a start	R
в	NONE ESTABLISHED	(PLATINUM- 30% RHODIUM Pt-30%Rh	PLATINUM-6% RHODIUM Pt-6%Rh	0 to 1820°C 32 to 3308°F	0 to 13.820	Ces:	в

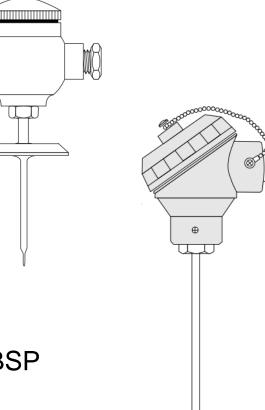
RTD's vs. Thermocouples


Resistance Temperature Detector (Rtd) vs. Thermocouples (General Principles)

Features	Rtd	Thermocouple		
Accuracy	More Accurate	Less Accurate		
Temperature Range	-200 to 600°C	-200 to 2000°C		
Initial Cost	More Expensive	Less Expensive		
Sensitivity	1" Typical (other lengths available)	Point Sensing Only		
Response Time	1 to 7 seconds	less than 0.1 second		
Robustness	Good	Good, Subject to drift		
Reference Junction	Not Required	Required		
Long Term Stability	Excellent	Good. Subject to drift		
Output Resistance 0.4 ohm/ohm/ºC Highly Linear		Voltage 10-40 microvolts/ºC, Approximately linear		
lectrical Noise Resistance	Less susceptible	More susceptible		

Source: Keystone Industries – May 2013

Parts of a Standard Probe



Probe Options

Tip options Fast response Standard Simplex Duplex

Head options

Small or large aluminium Polypropylene Bakelite Stainless steel Process Connection options- ½ inch BSP

Probe Options (Cont.)

Transmitter options

Isolating (T/C) Non Isolating

Terminal options Fixed Floating Ceramic Bake light

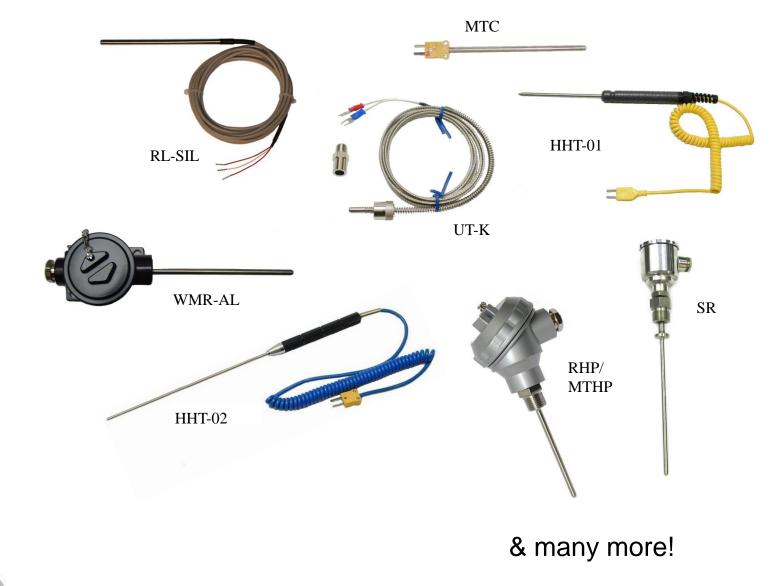
Plug options (T/C)

Miniature Plug Miniature Jack Standard & High Temp Plug Standard & High Temp Jack Standard Duplex

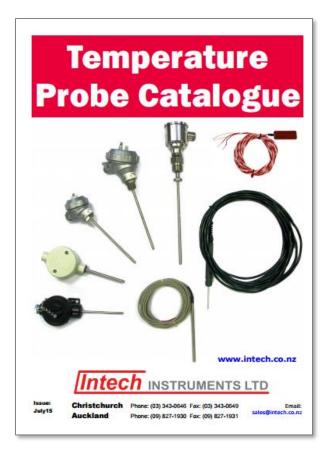
Accessories

Pockets

Flanges



Compression glands



Stock and Custom made Probes

Intech Probe Catalogue

Download online: <u>https://www.intech.co.nz/wp-content/uploads/2019/10/Probe-Catalogue-Web.pdf</u>

THANK YOU!

Questions?

Contact us:

INTECH INSTRUMENTS LTD. Christchurch: 03 343 0646 Auckland: 09 827 1930 <u>sales@intech.co.nz</u> <u>www.intech.co.nz</u>