# **PI-N Programmable Isolating Differential RTD Transmitter.**

### Features.

Field Programmable Input and Output Ranges. **Bi-Polar Input and Output Ranges.** Isolated Input to Output 1.6kV. High Accuracy & Linearity to 0.1%. Linear With Temperature. Universal AC/DC Power Supply. Compact DIN Rail Mount Enclosure. Available Standard or Special Calibration.

# Ordering Information.

PI-N-X

Standard Calibration:

**INPUT RANGES (DIN PT100)** 

Input 0~100C; Output 4~20mA; Upscale Break; High Voltage Power Supply.

PI-N -IR OR SB - Special Range

Other types of RTD available in special range calibration are JIS Pt100, Pt250, Pt500, Pt1000, CU10, CU100, Ni100 or specify

**OUTPUT RANGES** 

Special Range Calibration.

| deg C  | IR     | deg C     | IR | deg F   | IR   | deg F     | IR | Voltage | OR    | Current  | OR | State     | SB |
|--------|--------|-----------|----|---------|------|-----------|----|---------|-------|----------|----|-----------|----|
| 0~20C  | 1      | -10~10C   | 21 | 0~40F   | 41   | -20~20F   | 61 | 0~500mV | Α     | 0~1mA    | 1  | Upscale   | US |
| 0~25C  | 2      | -10~20C   | 22 | 0~50F   | 42   | -20~40F   | 62 | 0~1V    | В     | 0~2mA    | 2  | Downscale | DS |
| 0~30C  | 3      | -10~40C   | 23 | 0~60F   | 43   | -20~80F   | 63 | 0~2V    | С     | 0~5mA    | 3  |           |    |
| 0~40C  | 4      | -20~20C   | 24 | 0~80F   | 44   | -40~40F   | 64 | 0~3V    | D     | 0~10mA   | 4  |           |    |
| 0~50C  | 5      | -20~30C   | 25 | 0~100F  | 45   | -40~60F   | 65 | 0~4V    | Е     | 0~16mA   | 5  |           |    |
| 0~60C  | 6      | -25~25C   | 26 | 0~120F  | 46   | -50~50F   | 66 | 0~5V    | F     | 0~20mA   | 6  |           |    |
| 0~70C  | 7      | -25~50C   | 27 | 0~140F  | 47   | -50~100F  | 67 | 0~6V    | G     | 1~5mA    | 7  |           |    |
| 0~75C  | 8      | -30~20C   | 28 | 0~150F  | 48   | -60~40F   | 68 | 0~8V    | Н     | 2~10mA   | 8  |           |    |
| 0~80C  | 9      | -50~50C   | 29 | 0~160F  | 49   | -100~100F | 69 | 0~10V   |       | 4~20mA   | 9  |           |    |
| 0~90C  | 10     | -50~100C  | 30 | 0~180F  | 50   | -100~200F | 70 | 0~12V   | J     | -1~1mA   | 10 |           |    |
| 0~100C | 11     | -50~150C  | 31 | 0~200F  | 51   | -100~300F | 71 | 1~5V    | Κ     | -2~2mA   | 11 |           |    |
| 0~110C | 12     | -100~100C | 32 | 0~220F  | 52   | -200~200F | 72 | 2~10V   | L     | -5~5mA   | 12 |           |    |
| 0~120C | 13     | -100~200C | 33 | 0~240F  | 53   | -200~400F | 73 | -1~1V   | Μ     | -10~10mA | 13 |           |    |
| 0~125C | 14     | -200~200C | 34 | 0~250F  | 54   | -400~400F | 74 | -2~2V   | Ν     | -20~20mA | 14 |           |    |
| 0~150C | 15     | -200~400C | 35 | 0~300F  | 55   | -400~800F | 75 | -5~5V   | 0     |          |    |           |    |
| 0~200C | 16     | 20~40C    | 36 | 0~400F  | 56   | 40~80F    | 76 | -10~10V | Ρ     |          |    |           |    |
| 0~250C | 17     | 50~100C   | 37 | 0~500F  | 57   | 100~200F  | 77 | -12~12V | Q     |          |    |           |    |
| 0~300C | 18     | 50~150C   | 38 | 0~600F  | 58   | 100~300F  | 78 |         |       |          |    |           |    |
| 0~400C | 19     | 100~200C  | 39 | 0~800F  | 59   | 200~400F  | 79 |         |       |          |    |           |    |
| 0~600C | 20     | 100~500C  | 40 | 0~1200F | 60   | 200~1000F | 80 |         |       |          |    |           |    |
| Specia | l Inpu | t Range   | Ζ  | Specia  | Inpu | it Range  | Ζ  | Special | Outpu | ut Range | Ζ  |           |    |

| POWER SUPPLY                            | PS |
|-----------------------------------------|----|
| High Voltage Power Supply: 85~264Vac/dc | Н  |
| Mid Voltage Power Supply: 22~85Vac/dc   | М  |
| Low Voltage Power Supply: 10~28Vac/dc   | L  |

Note: Power supply H is field selectable for M, and M for H. Power supply L must be ordered separately.

# Ordering Examples.

1/ PI-N-5-1-L 0~50C Input; 0~1mA Out; Upscale Break; Low Voltage Power Supply. 2/ PI-N-Z-P-H-CU10-0/150C CU10 0~150C In; -10~10V Out; Upscale Break; High Voltage Power Supply.

# Quality Assurance Programme.

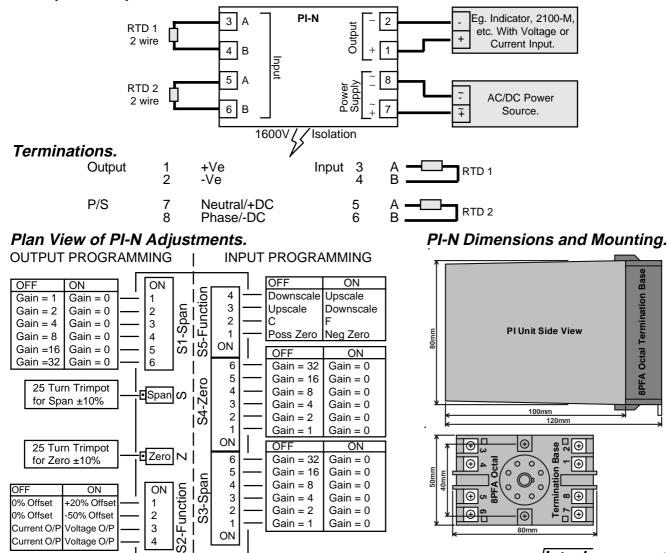
The modern technology and strict procedures of the ISO9001 Quality Assurance Programme applied during design, development, production and final inspection grant long term reliability of the instrument.

**Programmable Isolating Differental** 2 Wire RTD Input to DC Current or DC Voltage Output Transmitter.

TECHNOLOG

Other PI- models include: PI-B Bridge / Straingauge; PI-D DC; mA, mV, V. **PI-F Frequency;** PI-K Resistance: PI-M Maths Computing; PI-N RTD Differential Pt100; **PI-P** Potentiometer; PI-R RTD Pt100; PI-S Relay Dual Setpoint: PI-T Thermocouple.

Sensor Break


# PI-N Rev2 Specifications.

| RTD Input   | t                                     | Pt100 DIN (2 Wire Type) Standard.                                                                        |  |  |  |  |  |  |  |
|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|             |                                       | Sensor Current = 0.8mA Typical.                                                                          |  |  |  |  |  |  |  |
|             |                                       | Field Programmable Zero From -200C(-400F) to 200C(400F).                                                 |  |  |  |  |  |  |  |
|             |                                       | Field Programmable Span From 20C(40F) to 600C(1200F).                                                    |  |  |  |  |  |  |  |
|             |                                       | Other Types of RTD Available:                                                                            |  |  |  |  |  |  |  |
|             |                                       | JIS Pt100, Pt250, Pt500, Pt1000, CU10, CU100, Ni100 or Specified.                                        |  |  |  |  |  |  |  |
| Output      | - Voltage                             | Field Programmable From 500mVdc to ±12Vdc.                                                               |  |  |  |  |  |  |  |
| -           | -                                     | Maximum Output Drive = 10mA.                                                                             |  |  |  |  |  |  |  |
|             | - Current                             | Field Programmable From 1mAdc to ±20mAdc.                                                                |  |  |  |  |  |  |  |
|             |                                       | Maximum Output Drive = $10Vdc.$ ( $500\Omega @ 20mA.$ )                                                  |  |  |  |  |  |  |  |
| Power       | -H                                    | 85~264Vac/dc; 50/60Hz; 5VA.                                                                              |  |  |  |  |  |  |  |
|             | -M                                    | 22~85Vac/dc; 50/60Hz; 5VA.                                                                               |  |  |  |  |  |  |  |
|             | -L                                    | 10~28Vac/dc; 50/60Hz; 5VA.                                                                               |  |  |  |  |  |  |  |
|             | -Circuit Sensitivity                  | <±0.001%/V FSO Typical.                                                                                  |  |  |  |  |  |  |  |
| Accurate t  | 0                                     | <±0.1% FSO Typical.                                                                                      |  |  |  |  |  |  |  |
| Linearity & | Repeatability                         | <±0.1% FSO Typical.                                                                                      |  |  |  |  |  |  |  |
| Ambient D   | Drift                                 | <±0.01%/C FSO Typical.                                                                                   |  |  |  |  |  |  |  |
| Noise Imn   | nunity                                | 125dB CMRR Average. (1600Vdc Limit.)                                                                     |  |  |  |  |  |  |  |
| EMC Corr    | npliances                             | Emissions EN 55022-A. Immunity EN 50082-1, <1% Effect FSO Typical.                                       |  |  |  |  |  |  |  |
| Safety Co   | mpliance                              | EN 60950                                                                                                 |  |  |  |  |  |  |  |
| Mains Isol  | ation                                 | 250Vac.                                                                                                  |  |  |  |  |  |  |  |
| Isolation T | est Voltages                          | Mains to Input/Output 3kVac 50Hz for 1min; Input to Output 1.6kVdc for 1min.                             |  |  |  |  |  |  |  |
| Response    | Time                                  | 200msec Typical. (10 to 90% 50msec Typical.)                                                             |  |  |  |  |  |  |  |
| Operating   | Temperature & Humidity                | 0~60C. (Storage Temp20~80C.) 5~85% RH Max. Non-Condensing.                                               |  |  |  |  |  |  |  |
|             | ns and Mounting                       | L=80, W=50, H=120mm. Mounts on 35mm Symetrical Mounting Rail.                                            |  |  |  |  |  |  |  |
| Product Lia | bility. This information describes of | pur products. It does not constitute guaranteed properties and is not intended to affirm the suitability |  |  |  |  |  |  |  |

**Product Liability.** This information describes our products. It does not constitute guaranteed properties and is not intended to affirm the suitability of a product for a particular application. Due to ongoing research and development, designs, specifications, and documentation are subject to change without notification. Regrettably, omissions and exceptions cannot be completely ruled out. No liability will be accepted for errors, omissions or amendments to this specification. Technical data are always specified by their average values and are based on Standard Calibration Units at 25C, unless otherwise specified. Each product is subject to the 'Conditions of Sale'.

Warning: These products are not designed for use in, and should not be used for patient connected applications. In any critical installation an independant fail-safe back-up system must always be implemented.

Examples of Input Connection.



# PI-N Input Programming.

Always set **OUTPUT range first**, then INPUT range.

If the Input range is not listed in the programming table, use the following formulae to work out the Zero and Span DIP switch settings for gain.

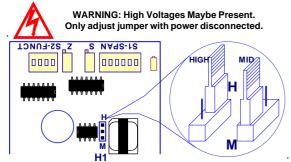
| Deg C Span Gain = | 1200<br>deg C High - deg C Low | Deg F Spain Gain = | 2400<br>deg F High - deg F Low |
|-------------------|--------------------------------|--------------------|--------------------------------|
| Deg C Zero Gain = | deg C Low<br>5                 | Deg F Zero Gain =  | deg F Low<br>10                |

If Zero is: 1/ Positive, put S5-1 OFF. 2/ Negative, put S5-1 ON.

|                | _ |   |   |   |    | <u> </u> | So if a gain value of 28 is required, put DIP switch No's 3, 4, 5 OFF (ie, gains of                       |
|----------------|---|---|---|---|----|----------|-----------------------------------------------------------------------------------------------------------|
| Gain Value     | 1 | 2 | 4 | 8 | 16 | 32       | 4 + 8 + 16 = 28) and all the other DIP switches ON.                                                       |
| DIP Switch No. | 1 | 2 | 3 | 4 | 5  | 6        | DIP switches and Pots are accessed by removing the small rectangular lid on the top of the PI-N enclosure |

Enter the Zero or Span gain value into the appropriate Zero or Span DIP switch. Note: (a)

If the ZERO GAIN exceeds 63, then the input range must be factory calibrated. (b)


 PI-N Input Range Programming Table.

 Notes:
 1/
 Switch status 1 = ON, 0 = OFF, X = DON'T CARE.

 2/
 Input ranges with '\*' beside them require more adjustment by the Span trimpot.

|               | em require more adjustment by the Span trimp |   |   |   |      |   |   |    |   | mpot |      |   |   |   |          |          |        |
|---------------|----------------------------------------------|---|---|---|------|---|---|----|---|------|------|---|---|---|----------|----------|--------|
| Input Range C | Input Range F                                |   |   |   | Spar |   |   | L. |   |      | Zero |   |   |   | -        | ncti     |        |
| Put S5-2 OFF  | Put S5-2 ON                                  | 1 | 2 | 3 | 4    | 5 | 6 | 1  | 2 |      | 4    | 5 | 6 | 1 | 2        | 3        | 4      |
| 0~20C         | 0~40F                                        | 1 | 1 | 0 | 0    | 0 | 0 | 1  | 1 | _    | 1    | 1 | 1 | X |          | ak.      | reak.  |
| 0~25C         | 0~50F                                        | 1 | 1 | 1 | 1    | 0 | 0 | 1  |   |      | 1    | 1 | 1 | X |          | real     | e e    |
| 0~30C         | 0~60F                                        | 1 | 1 | 1 | 0    | 1 | 0 | 1  |   | _    | 1    | 1 | 1 | X |          | <b>B</b> | B      |
| 0~40C         | 0~80F                                        | 1 | 0 | 0 | 0    | 0 | 1 | 1  |   |      | 1    | 1 | 1 | X | Ŀ        | 5        | or     |
| 0~50C         | 0~100F                                       | 1 | 1 | 1 | 0    | 0 | 1 | 1  | 1 | _    | 1    | 1 | 1 | X | Ш        | so       | so     |
| 0~60C         | 0~120F                                       | 1 | 1 | 0 | 1    | 0 | 1 | 1  | 1 | _    | 1    | 1 | 1 | X | NHE      | en       | ense   |
| 0~70C *       | 0~140F *                                     | 0 | 1 | 1 | 1    | 0 | 1 | 1  |   |      | 1    | 1 | 1 | X |          | S.       | s.     |
| 0~75C         | 0~150F                                       | 1 | 1 | 1 | 1    | 0 | 1 | 1  | 1 | _    | 1    | 1 | 1 | X | Ш        | ш        | ш      |
| 0~80C         | 0~160F                                       | 0 | 0 | 0 | 0    | 1 | 1 | 1  | 1 | _    | 1    | 1 | 1 | X | 2        | AL       | AL     |
| 0~90C         | 0~180F                                       | 0 | 1 | 0 | 0    | 1 | 1 | 1  | 1 |      | 1    | 1 | 1 | X | I        | US I     | C/     |
| 0~100C *      | 0~200F *                                     | 1 | 1 | 0 | 0    | 1 | 1 | 1  | 1 |      | 1    | 1 | 1 | X | <b>ک</b> | Ň        | N<br>N |
| 0~110C        | 0~220F                                       | 0 | 0 | 1 | 0    | 1 | 1 | 1  |   |      | 1    | 1 | 1 | X | Ľ        | OWNS     | OWNS   |
| 0~120C        | 0~240F                                       | 1 | 0 | 1 | 0    | 1 | 1 | 1  |   | _    | 1    | 1 | 1 | X | 2        | N N      |        |
| 0~125C *      | 0~250F *                                     | 1 | 0 | 1 | 0    | 1 | 1 | 1  | 1 | _    | 1    | 1 | 1 | X | 0        | ۱ŏ       | D      |
| 0~150C        | 0~300F                                       | 1 | 1 | 1 | 0    | 1 | 1 | 1  |   | _    | 1    | 1 | 1 | X | ш        |          |        |
| 0~200C        | 0~400F                                       | 1 | 0 | 0 | 1    | 1 | 1 | 1  | 1 | _    | 1    | 1 | 1 | Х | -        | fo       | for    |
| 0~250C *      | 0~500F *                                     | 0 | 1 | 0 | 1    | 1 | 1 | 1  | 1 | _    | 1    | 1 | 1 | Х |          | -        | 0      |
| 0~300C        | 0~600F                                       | 1 | 1 | 0 | 1    | 1 | 1 | 1  | 1 |      | 1    | 1 | 1 | X | 0        | 0        |        |
| 0~400C        | 0~800F                                       | 0 | 0 | 1 | 1    | 1 | 1 | 1  | 1 | 1    | 1    | 1 | 1 | Х | ∣⊢       |          | to     |
| 0~600C        | 0~1200F                                      | 1 | 0 | 1 | 1    | 1 | 1 | 1  | 1 | 1    | 1    | 1 | 1 | Х | ⊨        | et       | et     |
| -10~10C       | -20~20F                                      | 1 | 1 | 0 | 0    | 0 | 0 | 1  | 0 | 1    | 1    | 1 | 1 | 1 | Ш        | S        | ပ      |
| -10~20C       | -20~40F                                      | 1 | 1 | 1 | 0    | 1 | 0 | 1  | 0 | 1    | 1    | 1 | 1 | 1 | ິ        | Σ.       | reak.  |
| -10~40C       | -20~80F                                      | 1 | 1 | 1 | 0    | 0 | 1 | 1  | 0 | 1    | 1    | 1 | 1 | 1 |          | rea      | ea     |
| -20~20C       | -40~40F                                      | 1 | 0 | 0 | 0    | 0 | 1 | 1  | 1 | 0    | 1    | 1 | 1 | 1 | Š        | <b>B</b> | B      |
| -20~30C       | -40~60F                                      | 1 | 1 | 1 | 0    | 0 | 1 | 1  | 1 | 0    | 1    | 1 | 1 | 1 | Ū        | <u> </u> |        |
| -25~25C       | -50~50F                                      | 1 | 1 | 1 | 0    | 0 | 1 | 0  | 1 | 0    | 1    | 1 | 1 | 1 | 9        | sol      | ensor  |
| -25~50C       | -50~100F                                     | 1 | 1 | 1 | 1    | 0 | 1 | 0  | 1 | 0    | 1    | 1 | 1 | 1 | ш        | ens      | ů,     |
| -30~20C       | -60~40F                                      | 1 | 1 | 1 | 0    | 0 | 1 | 1  | 0 | 0    | 1    | 1 | 1 | 1 | บ        | Se       | Se     |
| -50~50C       | -100~100F                                    | 1 | 1 | 0 | 0    | 1 | 1 | 1  | 0 | 1    | 0    | 1 | 1 | 1 | -        | ш        | Ш      |
| -50~100C      | -100~200F                                    | 1 | 1 | 1 | 0    | 1 | 1 | 1  | 0 |      | 0    | 1 | 1 | 1 | 0 8      |          |        |
| -50~150C      | -100~300F                                    | 1 | 0 | 0 | 1    | 1 | 1 | 1  | 0 | 1    | 0    | 1 | 1 | 1 |          | CA       | CA     |
| -100~100C     | -200~200F                                    | 1 | 0 | 0 | 1    | 1 | 1 | 1  | 1 | 0    | 1    | 0 | 1 | 1 |          | S        | S      |
| -100~200C     | -200~400F                                    | 1 | 1 | 0 | 1    | 1 | 1 | 1  | 1 | 0    | 1    | 0 | 1 | 1 | 0        | П<br>П   | П<br>П |
| -200~200C     | -400~400F                                    | 0 | 0 | 1 | 1    | 1 | 1 | 1  | 1 | 1    | 0    | 1 | 0 | 1 |          |          |        |
| -200~400C     | -400~800F                                    | 1 | 0 | 1 | 1    | 1 | 1 | 1  | 1 | 1    | 0    | 1 | 0 | 1 |          | for      | for    |
| 20~40C        | 40~80F                                       | 1 | 1 | 0 | 0    | 0 | 0 | 1  | 1 | 0    | 1    | 1 | 1 | 0 |          |          | -      |
| 50~100C       | 100~200F                                     | 1 | 1 | 1 | 0    | 0 | 1 | 1  | 0 |      | 0    | 1 | 1 | 0 | Ш        | 0        |        |
| 50~150C       | 100~300F                                     | 1 | 1 | 0 | 0    | 1 | 1 | 1  | 0 | 1    | 0    | 1 | 1 | 0 | S<br>S   | to       | to     |
| 100~200C      | 200~400F                                     | 1 | 1 | 0 | 0    | 1 | 1 | 1  | 1 |      | 1    | 0 | 1 | 0 |          |          |        |
| 100~500C      | 200~1000F                                    | 0 | 0 | 1 | 1    | 1 | 1 | 1  | 1 | _    | 1    | 0 | 1 | 0 |          | Set      | Set    |
|               |                                              |   |   |   | 05-  | _ |   |    |   |      |      | - |   |   |          |          |        |

# PI-N H1 Power Supply Jumper Settings.



|    | Power Supply Jumper Settings |  |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| H1 | Power Supply Voltage Range   |  |  |  |  |  |  |  |  |  |  |  |
| Н  | Link for High: 85~264Vac/dc  |  |  |  |  |  |  |  |  |  |  |  |
| М  | Link for Mid: 22~85Vac/dc    |  |  |  |  |  |  |  |  |  |  |  |

Notes:

1/H1 is approx 4cm (11/2") behind the 'S' trimpot.

2/ Exceeding voltage ranges may damage the unit.

3/ Ensure the enclosure label is correctly labelled for the jumper position.

4/ Adjust H1 jumper with a pair of needle nose pliers.

5/ Low Voltage Power Supply version is fixed, and has no jumper. This must be ordered separately.

#### Output Range Programming Table. Notes:

1/

2/

Switch status 0 = OFF.1 = ONOutput ranges with '\*' beside them reverse the polarity of the output connections.

| Output    |   | S | 1-5 | <b>PA</b> | N |   | S2 | -Fu | nct | ion |           |   | S | 1-8 | <b>PA</b> | S2-Function |   |   |   |   |   |
|-----------|---|---|-----|-----------|---|---|----|-----|-----|-----|-----------|---|---|-----|-----------|-------------|---|---|---|---|---|
| Range (V) | 1 | 2 | 3   | 4         | 5 | 6 | 1  | 2   | 3   | 4   | Range (I) | 1 | 2 | 3   | 4         | 5           | 6 | 1 | 2 | 3 | 4 |
| 0~500mV   | 0 | 1 | 1   | 1         | 1 | 1 | 0  | 0   | 1   | 1   | 0~1mA     | 0 | 1 | 1   | 1         | 1           | 1 | 0 | 0 | 0 | 0 |
| 0~1V      | 1 | 0 | 1   | 1         | 1 | 1 | 0  | 0   | 1   | 1   | 0~2mA     | 1 | 0 | 1   | 1         | 1           | 1 | 0 | 0 | 0 | 0 |
| 0~2V      | 1 | 1 | 0   | 1         | 1 | 1 | 0  | 0   | 1   | 1   | 0~5mA     | 0 | 1 | 0   | 1         | 1           | 1 | 0 | 0 | 0 | 0 |
| 0~3V      | 1 | 0 | 0   | 1         | 1 | 1 | 0  | 0   | 1   | 1   | 0~10mA    | 1 | 0 | 1   | 0         | 1           | 1 | 0 | 0 | 0 | 0 |
| 0~4V      | 1 | 1 | 1   | 0         | 1 | 1 | 0  | 0   | 1   | 1   | 0~16mA    | 1 | 1 | 1   | 1         | 0           | 1 | 0 | 0 | 0 | 0 |
| 0~5V      | 1 | 0 | 1   | 0         | 1 | 1 | 0  | 0   | 1   | 1   | 0~20mA    | 1 | 1 | 0   | 1         | 0           | 1 | 0 | 0 | 0 | 0 |
| 0~6V      | 1 | 1 | 0   | 0         | 1 | 1 | 0  | 0   | 1   | 1   | 1~5mA     | 1 | 1 | 0   | 1         | 1           | 1 | 1 | 0 | 0 | 0 |
| 0~8V      | 1 | 1 | 1   | 1         | 0 | 1 | 0  | 0   | 1   | 1   | 2~10mA    | 1 | 1 | 1   | 0         | 1           | 1 | 1 | 0 | 0 | 0 |
| 0~10V     | 1 | 1 | 0   | 1         | 0 | 1 | 0  | 0   | 1   | 1   | 4~20mA    | 1 | 1 | 1   | 1         | 0           | 1 | 1 | 0 | 0 | 0 |
| 0~12V     | 1 | 1 | 1   | 0         | 0 | 1 | 0  | 0   | 1   | 1   | -1~1mA    | 1 | 0 | 1   | 1         | 1           | 1 | 0 | 1 | 0 | 0 |
| 1~5V      | 1 | 1 | 1   | 0         | 1 | 1 | 1  | 0   | 1   | 1   | -2~2mA    | 1 | 1 | 0   | 1         | 1           | 1 | 0 | 1 | 0 | 0 |
| 2~10V     | 1 | 1 | 1   | 1         | 0 | 1 | 1  | 0   | 1   | 1   | -5~5mA    | 1 | 0 | 1   | 0         | 1           | 1 | 0 | 1 | 0 | 0 |
| -1~1V     | 1 | 1 | 0   | 1         | 1 | 1 | 0  | 1   | 1   | 1   | -10~10mA  | 1 | 1 | 0   | 1         | 0           | 1 | 0 | 1 | 0 | 0 |
| -2~2V     | 1 | 1 | 1   | 0         | 1 | 1 | 0  | 1   | 1   | 1   | -20~20mA  | 1 | 1 | 1   | 0         | 1           | 0 | 0 | 1 | 0 | 0 |
| -5~5V     | 1 | 1 | 0   | 1         | 0 | 1 | 0  | 1   | 1   | 1   | 0~-10mA * | 1 | 0 | 1   | 0         | 1           | 1 | 0 | 0 | 0 | 0 |
| -10~10V   | 1 | 1 | 1   | 0         | 1 | 0 | 0  | 1   | 1   | 1   | 0~-20mA * | 1 | 1 | 0   | 1         | 0           | 1 | 0 | 0 | 0 | 0 |
| -12~12V   | 1 | 1 | 1   | 1         | 0 | 0 | 0  | 1   | 1   | 1   |           |   |   |     |           |             |   |   |   |   |   |
| 0~-5V *   | 1 | 0 | 1   | 0         | 1 | 1 | 0  | 0   | 1   | 1   |           |   |   |     |           |             |   |   |   |   |   |
| 0~-10V *  | 1 | 1 | 0   | 1         | 0 | 1 | 0  | 0   | 1   | 1   |           |   |   |     |           |             |   |   |   |   |   |

### The Proper Installation & Maintenance of PI-N.

Note. All power and signals must be de-energised before connecting any wiring, altering any jumpers or DIP switches, or inserting or removing the PI unit from it's base.

#### MOUNTINĞ.

- Mount in a clean environment in an electrical cabinet on 35mm Symmetrical mounting rail.
- Draft holes must have minimum free air space of 20mm. Foreign matter must not enter or block draft holes.
- (2) (3) Do not subject to vibration or excess temperature or humidity variations.
- Avoid mounting in cabinets with power control equipment.
- (4) (5) To maintain compliance with the EMC Directives the PI-N is to be mounted in a fully enclosed steel cabinet. The cabinet must be properly earthed, with appropriate input / output entry points, filtering and cabling.

#### WIRING.

- A readily accessible disconnect device and a 1A, 250Vac overcurrent device, must be in the power supply wiring. All cables should be good quality overall screened INSTRUMENTATION CABLE with the screen earthed at one end only. (1) (2) (3) (4)
- Signal cables should be laid a minimum distance of 300mm from any power cables. For 2 wire current loops and 2 wire RTDs, Austral Standard Cables B5102ES is recommended. For three wire transmitters and 3 wire RTDs Austral Standard Cables B5103ES is recommended.
- (5)For differential 2-wire RTD measurement it is important to use identical cables and keep them the same length, so errors due to cable length are kept minimal.
- It is recommended that you do not ground current loops and use power supplies with ungrounded outputs. (6)
- Lightning arrestors should be used when there is a danger from this source. (7)
- (8) RTD'S Refer to diagrams for connection information.

- Avoid locating the RTD where it will be in a direct flame.
- (1) (2) (3) Locate it where the average temperature will be measured. It should be representative of the mass.
- Immerse the RTD so that the measuring point is entirely in the temperature to be measured; 9 to 10 times the diameter of the protection tube is recommended. Heat that is conducted away from the measuring point causes an error in reading.

#### COMMISSIONING.

- Once all the above conditions have been carried out and the wiring checked apply power to the PI-N loop and allow five (1) minutes for it to stabilize.
- (2)Due to differences in cable resistance in the RTD legs or errors within the RTD itself a small Zero error may occur (usually less than 1C). To remove this error use two calibration standard RTDs at the same immersion depths and adjust the Zero Pot in the top of the PI-N enclosure with a small screwdriver, until the two levels agree. (Clockwise to increase the output reading and anti-clockwise to decrease the output reading.)

#### MAINTENANČE.

- Check RTDs in place with the calibration RTDs at the same immersion depths.
- Do it regularly at least once every 6 months. Replace defective protection tubes even if they (2) (3)
- look good they may not be fluid or gas tight. (4)Check cables entering the RTD sensor heads.