
  ezeio™ user manual

Manual version 170314
ezeio™ models AAC – AAF

Page 1 of 121



  Important information

WARNINGS

To reduce risk of fire or electric shock, do not expose this product to 
rain or moisture. This product is designed for use indoors and only 
with the supplied AC adapter. 
Unplug the AC adapter before opening the cover.

The ezeio™ is a low voltage device. 
Never connect high voltage to the inputs or outputs.

MicroLAN: Never use connectors or wires designed phone 
networks to connect MicroLAN devises.  
Phone connectors usually alter the polarity, and will permanently 
damage MicroLAN devices, voiding the warranty.

SIM Card & Cellular Antenna: Always disconnect the power 
adapter from the ezeio™ when installing or removing the SIM 
card or antennas.

Page 2 of 121



Registration

This product is identified by a unique serial number and a registration code 
on the front of the unit. 

You will need this information to communicate with the product.

When activating the unit, you will also be assigned an account number.

         Make a note of this important information below

Account Number: 

Serial Number:

Registration code:

  

Support contact information

Go to www.ezecontrol.com for support and contact information.

Page 3 of 121

http://www.wiocontrol.com/
http://www.ezecontrol.co/


Table of Contents 
 ezeio™ user manual

 Important information
WARNINGS........................................................................................2
Registration.........................................................................................3
Support contact information................................................................3

Introduction
What is the ezeio™ ?.............................................................................7
Model information...............................................................................8

Creating accounts and users
Overview.............................................................................................9
Creating a new account.......................................................................9
Add an ezeio to an existing account..................................................10
Adding users to an existing account..................................................10
Moving or removing an ezeio from an account................................10

Connections and installation
Things to consider before installing the ezeio™.................................11
ezeio™ overview...............................................................................12
Power connection..............................................................................13
Network connection..........................................................................13
General purpose inputs......................................................................15
Inputs – Pulse, switch or resistive sensors........................................16
Inputs – External voltage sources......................................................17
Inputs – Current sensors....................................................................18
Relay outputs.....................................................................................19
+ DC output terminal.........................................................................19
MicroLAN.........................................................................................20
Modbus / serial port...........................................................................22
GSM/3G/GPS module (select models only).....................................25

Web interface overview
Logging in.........................................................................................29

Dashboard screen
Dashboards........................................................................................31

Status screen
Live input status................................................................................33
Output status and control...................................................................33
Thermostat status...............................................................................34
Event log...........................................................................................34
Downloading log data.......................................................................34
Viewing graph of log data.................................................................35

Configure screen
ezeio™ Configuration.........................................................................37
Resource tree.....................................................................................37

Page 4 of 121



Inputs.................................................................................................38
Calibrating analog inputs..................................................................44
Alarm settings...................................................................................46
Actions..............................................................................................47
Conditions.........................................................................................48
Outputs..............................................................................................49
Schedules...........................................................................................50
Timers................................................................................................50
Thermostats / Thermostat schedules.................................................51
Devices..............................................................................................52
Script (premium feature)...................................................................54
System...............................................................................................55

Actions
Action: Send message.......................................................................60
Action: Log event..............................................................................66
Action: Set output..............................................................................66
Action: Set counter............................................................................66
Action: Increment counter.................................................................66
Action: Decrement counter...............................................................66
Action: Control thermostat................................................................66
Action: ModBus coil control.............................................................67
Action: ModBus write register..........................................................67

Account screen
Account.............................................................................................68
Personal.............................................................................................68
Users..................................................................................................69

Sending control commands
Email.................................................................................................70
Control via SMS (cellphone texting)................................................70
 Control Commands..........................................................................71

Server API
API access and security.....................................................................73
Live status in JSON format via REST API.......................................75
Historical data access in JSON format via REST API......................75
Controlling the ezeio™ via REST API...............................................76
Spreadsheet integration.....................................................................81
Automatic export (push)....................................................................83

Script language
Script introduction.............................................................................88

Script function library
Configuration interface functions......................................................92
Calendar and time functions..............................................................96
Mathematical functions.....................................................................98
Language functions.........................................................................102
String functions...............................................................................103

Page 5 of 121



Communication functions...............................................................108
Library functions.............................................................................111
System events..................................................................................114

Specifications
ezeio™..............................................................................................117
Configuration and programming.....................................................118
Server Communication....................................................................118

Warranty
Manufacturers warranty statement..................................................119
Liability disclaimer..........................................................................119

Standards compliance
Applicable standards.......................................................................120

Page 6 of 121



Introduction

Thank you for purchasing the ezeio™!

What is the ezeio™ ?

The ezeio™ is a complete solution for monitoring, alarming, control and 
automation of commercial and industrial equipment.

The ezeio™ hardware connects to sensors, meters, thermostats, VFD’s and 
other control devices locally via a number of industry standard interfaces.

It connects securely and seamlessly via the Internet (Ethernet or Cellular) to 
the ezecontrol.com cloud application, where the user can access all data in 
real time as well as historical. 

All configuration settings and programming is done via the cloud interface, 
allowing multiple concurrent users, automatic synchronization and secure 
access from anywhere without any special software or setup.

Common applications include:

+ Monitoring energy meters (electrical, water, gas)
+ M&V applications (energy saving, improvements)
+ Monitoring refrigeration systems (temperature, pressure)
+ Controlling & monitoring HVAC systems (thermostats, room sensors)
+ Construction site monitoring (cement curing, heating/cooling, alarms)
+ Automating thermal energy storage systems (*TES)
+ Technical alarm systems (fan monitors, temperature, tank levels)
+ Lighting control, monitoring and scheduling/automation 
+ Sprinkler control, monitoring and scheduling/automation
+ Battery / EV charging, monitoring and control
+ Vehicle tracking, monitoring (GPS)

The ezeio™ system is designed for easy deployment in geographically spread 
out, multi-dicipline applications where traditionally several single-purpose 
systems were needed.

The ability to support different kinds of sensors, meters, actuators and 
applications within a single, low cost yet complete and secure system makes 
the ezeio™ system unique.

Page 7 of 121



Model information

The ezeio™ is available in the following configurations:

Part Number Model
Wireless
 sensors

Cellular
GSM/3G/GPS

Cellular
Compatibility

111-0010-3 ezeio-Ethernet - - -

111-0020-3 ezeio-Wireless YES - -

111-0011-3
ezeio-Cellular - YES

US

112-0011-3 EU/AU

111-0021-3 ezeio-Wireless & 
Cellular

YES YES
US

112-0021-3 EU/AU

Base model
The ezeio™ connects to the Internet via standard 10/100 Ethernet and uses 
wired peripherals via Modbus, MicroLAN and general purpose in/outputs.

Wireless sensors
ezeio™ models equipped with a wireless transceiver module allow for 
communication with wireless sensors and expansion units. The wireless 
protocol is encrypted and only wireless devices from eze System can 
communicate with the ezeio™ over this network. Typical indoor range is 
about 50m (160ft) but depends on wall material and other environmental 
factors.

GSM/3G/GPS
When configured with a built-in GSM Cellular modem, the ezeio™ can 
communicate with the Internet via cell service. This requires service from a 
local cell provider and only GSM systems are supported. The ezeio™ will 
use the physical Ethernet path if it is available, but automatically switches to 
GSM if it can't communicate over Ethernet. 

The GSM modem also supports GPS, so with the addition of an external 
antenna, the ezeio™ will have access to its position in real time.

Common features
All versions run the same software and all other features are the same.

Some features depend on the service level. All versions come with four (4) 
months of Basic Service, which allows for logging data from five inputs. See 
our web page at www.ezesys.com for all the details about service levels and 
the monthly cost.

Script support (page 88) can be added to any ezeio™. 
Please contact eze System for more information.

Page 8 of 121



Creating accounts and users

Overview

To configure your ezeio™, you need to create an account on the server and 
associate the ezeio™ with that account. 

This is important to understand to effectively manage your systems:

(!!)  Each ezeio™ is associated with a single account.     
(!!)  Each user is associated with a single account. 
(!!)  An account may have any number of ezeio™ units and any number of
       users associated with it.

Note that you can register several ezeio™ units under the same account. This 
allows you to access all of them from a single login. See Add an ezeio to an 
existing account, page 10.

All users on the same account will have access to all the ezeio units on that 
account. If you prefer to separate user access, simply create unique accounts 
for each ezeio. There is no per-account cost, but having a lot of accounts 
may become difficult to manage.

Creating a new account

     Go to  www.ezecontrol.com  →  Click  Create a new account

Step 1:
The system will ask you for the ezeio serial number, and the 
registration code. These are printed on a sticker located on the 
front of your ezeio. 
Enter them exactly as they show on the sticker.   

Step 2:
Enter your user info:
Name, Email, Phone & Company or Account Name

Step 3:
Enter a User Name & Password.  
Click to send the verification email.

Step 4:
Open the email, click the link, and enter your password.  You're done!

In addition to your login name and password, the system assigns you an 
account ID. You will need the account ID every time you log in. Make 
sure to take a note of it. It is also included in the confirmation email.

Page 9 of 121

http://www.ezecontrol.com/


Add an ezeio to an existing account

Log in to your account and click the Configure tab.

In the Account section in the left column, click the Add controller button 
and enter the serial number and registration code.

The ezeio™ will be immediately added to your account.

If you receive an error, the ezeio™ may already be assigned to a different 
account. See below for how to remove or move an ezeio™.

Adding users to an existing account

To minimize the workload on the account owner, users register themselves.

You (the administrator or “admin”) need to provide each new user with the 
serial number and the registration code to one of the ezeios on your account. 
It doesn't matter which ezeio you use. The information is just used to link the 
user to the correct account.

Instruct the new user to go to the web page and click the Create a new 
account link. Then enter the ezeio serial number and registration code.

Then follow the rest of the sign-up instructions.

The process is basically the same as creating a new account.  See page 9.

This will automatically link the new user with your existing account, and 
you will receive an email informing you that a new user has been added.

By default, new users have minimal privileges. You can log in and change 
the privileges for each user by going to Account → Users and click on the 
user in the list.

Moving or removing an ezeio from an account

As mentioned above, an ezeio can only be added to an account if it is not 
already assigned to an account. To remove an ezeio from an account, go to 
Configure → System and click Delete Controller.

This will remove the association with the account. The configuration of the 
ezeio is not changed, and any data stored with the ezeio is kept.

Creating the account and adding users does  not  require the ezeio to be 
connected to the network. 

Configuration can also be done with the ezeio offline. See page 36.

Page 10 of 121



Connections and installation

Things to consider before installing the ezeio™

The ezeio™ is designed for indoor use and should be installed in a dry and 
clean location. Do not expose the ezeio™ to rain or water, and avoid extreme 
temperatures. See the technical specifications for acceptable ranges.

The ezeio™ is a low voltage device. Never connect high voltage to the inputs 
or outputs, and only use the supplied AC adapter to power the ezeio™.

Do not run wires that connects to the ezeio™  (Inputs / outputs / MicroLAN / 
Ethernet / Modbus / power or antenna) together with high voltage wiring. 
Use separate conduits whenever possible, and avoid environments with 
excessive RF or magnetic radiation as this may interfere or even destroy the 
ezeio™.

Take necessary precautions to avoid large static discharges to the ezeio™ 
connections.

MicroLAN: Never use connectors or wires designed for phone 
networks to connect MicroLAN devices.  Phone connectors 
usually alter the polarity, and will permanently damage MicroLAN 
devices, voiding the warranty.

Page 11 of 121



ezeio™ overview

Page 12 of 121

ezeio™ external connectors

Internal features
(SIM and antenna connectors only on GSM model)

Basic communication setup
(Antennas only on GSM model)



Power connection

Use the included AC adapter to connect to mains power.

The ezeio™ does not have an on/off switch, so as soon as the AC adapter is 
connected, the ezeio™ will operate.

Typical power consumption is very low (<2W), and the ezeio™ is designed to 
be always on.

Network connection

The ezeio™ has a standard TP 10/100 Ethernet connection. Use the included 
network cable to connect to a nearby Ethernet hub/switch/router that 
provides a link to the public Internet. If you use your own Ethernet cable, 
ensure the length does not exceed 30m (100ft).  

There are two jacks on the ezeio™ where an Ethernet cable fits. Take 
care connecting your Ethernet cable to the one with a metal frame, 
marked “Ethernet” (NOT the Modbus jack).

All communication parameters are pre-programmed in the ezeio™, so there is 
nothing to set up. The ezeio™ will automatically contact the servers.

The ezeio™ automatically establishes IP information through DHCP. 
Ensure your network connection supports DHCP and that the DHCP 
server provides valid gateway and DNS information.

For static IP setup see page 14.

The green LED on the Ethernet jack lights up as soon as there is a physical 
connection available.

Check the SERVER LED on the ezeio™ front for connection status:

Blink pattern Meaning

5 blinks Looking for DHCP address information

4 blinks IP address established
Querying DNS server for server IP

3 blinks Server address established
Attempting to make contact with server

2 blinks Communicating with server

1 blink Server connection established and idle

Page 13 of 121



Setting a static (fixed/manual) IP
The ezeio™ by default expect a DHCP service to provide the correct network 
settings for the device when it is connected to the network.

In some installations, it is required to supply specific network settings 
manually to each device to allow it to communicate on the network.

However this change can only be made from the system settings on 
ezecontrol.com.  Thus, the ezeio™ needs to be connected to a network that 
supports DHCP temporarily.    

To apply manual network settings, navigate 
to the Configure → System screen and enter 
IP addresses in the Ethernet settings section 
(see example to the right).

Please make sure all settings are correct 
before applying them. Incorrect settings will 
cause communication to fail.  As soon as the settings are synced the ezeio™ 
will loose contact with the servers via the DHCP network.  It can now be 
moved to the network that requires fixed IP.

Restoring DHCP functionality
To restore DHCP support, first remove the fixed IP settings on the server by 
blanking out the IP field and click Save Changes. If the ezeio™ is still 
communicating via fixed IP, the settings will be automatically synced and 
applied after the next reset of the ezeio™.

If the ezeio™ is not communicating, the reset procedure is as follows:

1) Remove power from the ezeio

2) Open the enclosure and locate the holes 
marked HALT (see picture to the right)

3) Apply a jumper between the two holes and 
make sure it stays in place, connecting the holes.

4) Connect power to the ezeio. keeping the 
jumper in place.

The LED's will blink very fast, and the ezeio™ 

will attempt to use DHCP to connect to the servers.

Verify that the ezeio™ connects by checking the status on ezecontrol.com.

When the “spinner” indicator stops and shows a green dot, the new 
configuration is saved. Power down and remove the jumper. 

The ezeio™ is now back in default DHCP mode.

Page 14 of 121



General purpose inputs

The ezeio™ has four general purpose inputs. Each input may be configured 
individually in one of four ways described here:

Jumper 
setting

Description

The factory default setting is Contact, Pulse or 
Resistive (0-50kOhm).
An internal 10k resistor will hold the input to 5V.

See pg. 16

0-5VDC
Input impedance is >70kOhm.
Raw reading is about 10000 at 5.0V (0.5mV per count)

See pg. 17
0-10VDC
Input impedance is >70kOhm.
Raw reading is about 10000 at 10.0V (1mV per count)

0-30mA (suitable for 4-20mA transducers)
An internal 100 Ohm resistor connects the input terminal 
to Common.
Raw reading is about 10000 at 30mA (3uA per count)

See pg. 18

To access the input jumper settings, open the ezeio™ by removing the four 
black screws. 

Page 15 of 121



Inputs – Pulse, switch or resistive sensors

Jumper 
setting

Description

Contact, Pulse or Resistive (0-50kOhm).
An internal 10k resistor will hold the input to 5V.
This is the factory default setting.

The default input configuration is suitable for connecting passive sensors, 
such as a switch, pulse meter or resistor.

With the jumper settings configured to Pulse/resist, (as shown above), the 
input has a 10kΩ pull-up resistor to +5V, allowing for variable-resistance 
devices or switches to be connected directly to the “C” (0 volt) terminal and 
one of the four input terminals like this:

If connecting to a pulse meter output, please make sure the polarity matches 
the meter's. The C terminal on the ezeio™ should be connected to the meter's 
minus (-) or ground. 

Three wire KYZ sensors (Form C) are read as two wire sensors (Form A); 
connect K to the ezeio’s C-terminal, and Y to one of the ezeio™ inputs. 

The ezeio™ input will detect pulses as short as 1ms. Some pulse outputs may 
have contact bounce, and requires a special setting in the software to ignore 
pulses that are too short. See System Settings.

Page 16 of 121

(   )

(   )

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

GSM/GPRS

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NOPulse Resistor Switch

 Common ◀
C = 0 volts



Inputs – External voltage sources

Jumper 
setting

Description

0-5VDC
Input impedance is >70kOhm.
Raw reading is about 10000 at 5.0V (0.5mV per count)

0-10VDC
Input impedance is >70kOhm.
Raw reading is about 10000 at 10.0V (1mV per count)

The 0-10V and 0-5V input settings are suitable for sensors with output 
voltage in that respective range. Simply connect the sensor to the input 
between the “C” (0 volt) terminal and the input as shown here:

The ezeio™ is designed for low voltage connections. Never connect high 
voltage to the ezeio™ inputs.

A series resistor can be added to increase the range of an input. Use a 
100kOhm resistor to allow measuring up to 20V. Use a 390kOhm resistor to 
allow measuring up to 50V. Contact eze System if you need to measure 
higher voltage than 50V.

Page 17 of 121

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

GSM/GPRS

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NO

Inputs 1 - 4 ▶

0-10V 
Source

 Common ◀
C = 0 volts



Inputs – Current sensors

Jumper 
setting

Description

0-30mA (suitable for 4-20mA transducers)
An internal 100 Ohm resistor connects the input terminal to Common.
Raw reading is about 10000 at 30mA (3uA per count)

To use 0-30mA (or 4-20mA) sensors, after setting the input jumper as 
explained above, connect the current loop sensor between the +DC output 
terminal and the input, like this:

The +DC output provides nominally 1V less than the voltage on the DC 
input. The standard DC adapter shipped with the ezeio™ outputs just over 
12V. If a higher voltage is required for the current loop sensor, either use a 
different adapter for the ezeio™, or feed the current loop from an external 
source, like this:

The internal current sense resistor in the ezeio™ is 100Ω, so the loop voltage 
drop at 20mA will be 2V ( U = R · I ).

Check the data sheet for your current sensor and make sure the voltage 
source is at least 2V higher than the minimum voltage for your sensor.

Page 18 of 121

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

GSM/GPRS

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NO

Inputs 1 - 4 ▶

Current loop 
using DC from 
eze io

 + DC◀

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

GSM/GPRS

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NO

Inputs 1 - 4 ▶

Current loop 
using external 
DC source

 Common ◀
C = 0 volts



Relay outputs

There are two relay outputs on the ezeio™. Each output has three screw 
terminals; 

NC (Normally Closed)
RE (center)
NO (Normally Open)

The RE terminal is connected to NC when the relay is not energized, and to 
NO when the relay is energized.

Examples of how to connect a load (here shown as a light bulb):

The relays are rated 50V and 2A. Higher voltage or current can 
cause permanent damage to the relays.

The relay outputs are dry contacts. If the load is inductive, please apply 
appropriate protection such as spark inhibitor and/or flyback diode.

+ DC output terminal

The + output terminal can be used to power external sensors or relays. The 
voltage on this terminal is nominally 1V lower than the input voltage on the 
DC input jack.  The + DC output can supply up to 200mA.

Page 19 of 121

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

GSM/GPRS

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NO

GSM/GPRS

0-10V / 4-20mA
RelaysInputs

Max 50V, 2A

Server

1 2 3 4 C + 1 B A +C2 . . . .
ModBus

NC NO NC NO

VUsing power 
from the ezeio

External 
power source



MicroLAN

MicroLAN allows you to connect temperature and RH sensors to the ezeio™. 
The system automatically detects the type of sensor connected, and adds it to 
the configuration.

The ezeio™ supports up to 20 devices connected to the MicroLan connector.

Only MicroLAN devices supplied by eze System will work with the 
ezeio™.  Supported sensors are automatically detected and added to the 
configuration.

MicroLAN indicator
The MicroLan LED indicates the status of the MicroLan device 
communications according to this table:

Blink pattern Meaning

off No devices detected and no devices expected

on Initializing

fast flash Searching for new devices

slow flash Devices configured/expected, but none 
communicating

2-flash Communicating, but at least one device missing

1-flash Communicating with all devices

Connecting a MicroLAN device
To add a MicroLan device to the ezeio™, remove power from the ezeio™, 
connect the new sensor and power up the unit. The ezeio™ will automatically 
detect the type of sensor and add it to configuration.

See ezeio™ Configuration on page 37 for more information.

To connect multiple MicroLAN devices, use MicroLAN splitters and 
extension cables as illustrated below.

Do not exceed 150ft (50m) total wire length on the MicroLAN network.

Page 20 of 121



MicroLAN connector pinout
The MicroLAN connector looks similar to phone connectors, but note that 
MicroLAN is using all six conductors, while phone networks typically only 
use four.

Never use connectors or wires designed phone networks to 
connect MicroLAN devises. Phone connectors usually alter the 
polarity, and will permanently damage MicroLAN devices, 
voiding the warranty.

RJ12 pin Signal Description

1 +5V +5V DC out, max 100mA

2 G Signal ground

3 Data 1-wire data (bidirectional)

4 G Signal ground

5 n/c not connected

6 DC+ 8-25V DC out, max 200mA

MicroLAN extension cables
Twisted pair cable, such as Cat3 or Cat5, AWG22-24, is recommend to 
ensure signal quality. Cables must be terminated with straight through 
pinout (see diagram below).  

Do not exceed 50m (150ft) total wire length on the MicroLAN 
network.

Page 21 of 121

1 2 3 4 5 6

1 2 3 4 5 6

REVERSE

END 1

END 2

1 2 3 4 5 6

1 2 3 4 5 6

STRAIGHT-THROUGH

END 1

END 2



Modbus / serial port

The ezeio™ has one Modbus RTU master port.

The communication default settings are 19200bsp, 8 data bits, No parity. 
The bit rate can be changed from the Configure→System screen.

Up to 20 Modbus devices (slaves) can be connected to the same Modbus 
RTU network, and the network can be up to 1000m (3000ft) long. Note that 
the wire length may in some cases be limited by the device specifications 
and environmental factors.

RS-485/Modbus RTU port pinout

View into ezeio™

ModBus port

Pin on
RJ45

Common 
nomenclature

EIA/TIA-
485 name

Description T568A/B
color

4 D1/D+ B/B' Data 1, V1 Voltage Blue

5 D0/D- A/A' Data 0, V0 Voltage Blue/white

7 VP  8-25V DC out, max 200mA Brown/white

8 Common C/C' Signal/power supply common Brown

This pin arrangement conforms to the Modbus specification, 2W-MODBUS 
(see www.modbus.org). Pins not listed above are not connected.

Standard Ethernet patch cables are suitable for extending the Modbus 
signals. Make sure your cables conform to the T568A/B standard. For long 
runs (>100m/300ft) and where interference may be an issue, please consider 
using shielded cable and end of line resistors.

We recommend using the color scheme described in the above table.

Page 22 of 121

http://www.modbus.org/


Connecting a Modbus device
Each Modbus device will need to be configured to a unique bus address and 
for the same communication settings as the ezeio™. Refer to the device 
manual for details on how to configure the device. 

In some cases the device can be powered from the ezeio™. In other cases the 
device needs a separate power supply. Refer to the device manual for details.

The ezeio™ needs to be configured with the device address to communicate 
with the new device. Refer to Configuring Modbus Devices, page 52 for 
details.

Always run the Common/Ground wire to all devices on the bus.

Note that some devices have other markings for A/B, such as “D0/D1” or 
“+/-”. Do not confuse bus +/- with power terminals. Connecting power to 
A/B terminals will likely damage the equipment.

Page 23 of 121



About Modbus
Modbus is a very common protocol used in data acquisition and control 
applications. Note however that just because some device supports Modbus, 
it doesn’t mean it automatically works with any other Modbus device.

The ezeio has support for over 50 different types of devices. Contact us for 
the complete list and to explore adding support do devices not already on the 
list.

Every Modbus network requires one ‘master’ and one or more ‘slave’ 
devices. The master device will send out periodic questions, and the slave 
devices will reply to those questions. Slave devices must never transmit 
unless specifically requested by the master.

The ezeio is always a Modbus RTU master.

The Modbus protocol can be transported over several different physical 
networks. The most common are RS-485 and Ethernet.

Modbus RTU (a.k.a. Modbus RS-485) is a robust multi-drop serial network. 
This means that all the devices connected to the network communicate over 
the same pair of wires. The signal rate is typically 19200 bits per second, 
which is usually more than enough for the types of devices used in ezeio 
applications.

Modbus TCP/IP use Ethernet hardware to connect the devices. The data 
rate is much higher than on RS-485, but that also limits the range (typically 
to 100m/300ft). Ethernet uses switches to which all devices needs to be 
connected (star topology).

While the fundamental protocol is the same over Modbus RTU and TCP/IP, 
the IP network requires additional consideration to have the data correctly 
routed and correctly addressed. In common data acquisition and control 
applications, Modbus TCP does not provide any functional benefit, but adds 
significant complexity to the setup process. 

The ezeio support Modbus RTU.

While Modbus TCP is not supported by the ezeio™, there are protocol 
converters for Modbus TCP to Modbus RTU. Contact eze System for details.

Page 24 of 121



GSM/3G/GPS module (select models only)

ezeio™  models equipped with a GSM/3G/GPS module are capable of 
communicating with the Internet via mobile cell service. 

The GSM/3G signal is used to communicate with the server if the Ethernet 
connection is not available. The switch between Ethernet and GSM is 
automatic. 

When the Ethernet connection is available, the ezeio™ automatically 
communicates via the wire. If the Ethernet connection is not usable, the 
ezeio™ uses the cellular service to connect to the servers. 

A valid SIM card with data service is required to use the GSM connection. 

eze System can provice SIM and cellular service in some areas. Contact us 
for details.

Always disconnect power from the ezeio™ when installing or 
removing SIM card or antennas. 
Do not power up the ezeio™ without a cellular antenna connected.

Inserting the SIM card

To insert the SIM card in the holder inside the ezeio™, remove the four 
screws retaining the enclosure cover, and slide in the SIM card in the holder, 
(as shown below).

Page 25 of 121



Attaching the GSM (communication) antenna

The supplied GSM antenna should be mounted on the right-hand antenna 
connector. Mount the ezeio™ with the antenna in a vertical position for best 
reception. 

Always disconnect power from the ezeio™ when installing or 
removing SIM card or antennas. 
Do not power up the ezeio™ without a cellular antenna connected.

GSM service

Your GSM service must allow data 
connectivity. The ezeio™ will only 
use cellular data. It does not use 
voice minutes or text messages.

Typical data usage for a full month is 
about 7-15 MB, but may vary 
depending on how frequently 
logging data is captured and other 
configuration parameters.

Make sure the cellular antenna is connected in the connector to the 
right. Do not use tools to tighten the antenna nut. It only needs to 
be finger tight.

GPS (positioning) antenna

The optional GPS antenna (purchased separate) connects to the left antenna 
connector. Make sure the GPS antenna has a clear view of the sky.

Page 26 of 121



GSM Settings
In some cases, depending on your wireless carrier, you may need to enter the 
GPRS APN, GPRS Login and GPRS Password on the system configurations 
screen.  These settings are different depending on your wireless carrier.  You 
should have received this information with your SIM card if they are 
required.

Note that these settings have to be downloaded into your ezeio™ before 
the GSM will work. The ezeio™ must connect through the Ethernet port to 
a working network before you insert the SIM card.

GSM (Cellular) indicator
The GSM LED indicates the status of the cell radio as described in the table 
below.

Blink pattern Meaning

off GSM radio is turned off

on Waiting for the GSM module to switch on

5 on-blink* Attempting to initialize GSM module

4 on-blink* GSM module requested SIM-PIN. 

3 on-blink* Module active. Waiting for GPRS network.

2 on-blink* GPRS network ok. Establishing IP connection.

1 on-blink* Server link dropped. Reinitializing.

Normal blinks 1-5 blinks. 
Reception quality (e.g.1-5 “bars” on a cell phone)

* “on-blink” refers to that the LED is on most of the time and pulses off.

Page 27 of 121



GPS position
The GSM/3G transceiver module has built-in support for satellite GPS 
positioning, but requires a separate antenna (not included, visit our website 
for details)

To use the GPS feature, attach the GPS antenna to the left antenna connector 
and mount the antenna with a clear view of the sky. The ezeio™ may need to 
be restarted to recognize the GPS antenna. It may take a few minutes for the 
ezeio™ to find enough satellites and lock in an accurate position.

The GPS position will be available on the status page.

The GPS position is mapped as inputs on the ezeio™ as follows:

Input Description

Input #7 GPS Latitude, degrees * 1 000 000

Input #8 GPS Longitude, degrees * 1 000 000

Input #9 GPS Elevation, meters * 10

Page 28 of 121



Web interface overview
When the ezeio™ is online (Server LED flashing once every few seconds), 
the data from that ezeio™ is directly available from the web.

The web interface can be accessed even if the ezeio™ is not online, but only 
historical data will be available, and any changes to the configuration will be 
saved and committed to the ezeio™ once it's back online.

Logging in

Go to www.ezecontrol.com and log in to your account. 
You need your account number, user name and password.

There are four main sections of the web interface:

Dashboard – a configurable overview of all ezeio™ units on the account

Status – full live status of one ezeio™ at a time

Configure – settings for each ezeio™ unit

Account – account and user settings

Access to the individual features on the web site is controlled by the user 
privilege settings and the service level of the ezeio™. 
For example, the configuration tab is not visible for users with minimal 
privileges.

Access to the web page is secured with SSL. If your browser or IT policy 
does not allow this, the system can be accessed without encryption, but is 
not recommended, using: www.ezecontrol.com?insecure

There are no restrictions on the number of simultaneous users or on using 
the same user login from multiple computers.  Each user will be logged out 
after 60 min of inactivity.

Page 29 of 121

http://www.ezecontrol.com/


 Controllers Panel

The functions in next two sections of the web interface, Status and 
Configuration, are ezeio™ specific. 

Click on Status or Configuration. Use the Controllers panel on the left to 
select the ezeio™ unit you want to view or configure.

The table displays the Serial number, Name and the communication status:

Hovering over the icon will give you addition information. 

Right click the ezeio™ entry to access the drop-down menu:

Flush Config will download all configuration into the ezeio™ unit. This may 
be useful if a lot of configuration changes has been made to make sure all 
settings are aligned between the servers and the ezeio™.

Reset Controller will cause the ezeio™ unit to reboot. It does not change any 
configuration settings or logged data.

Page 30 of 121

← Green dot : Online via Ethernet
← Dot with bar(s) : Online via Ethernet & Cellular link is ready
← Warning triangle : Offline
← Antenna, green dot and bar(s) : Online via cellular



Dashboard screen

Dashboards

After logging in, the Dashboard is always shown first. Here you can 
graphically display data from any ezeios on the account. 

There are two Dashboard views; Personal and Account. 

The Personal view is only accessible by the logged in user, while the 
Account view is common for all users on the same account. Only users with 
privilege to change account information can alter the Account view.

Each Dashboard consists of configurable blocks, called “widgets”. There are 
many widget types to choose from, and each user may set up the widgets to 
his/her liking. Click on  Add widget in the upper left of the screen and 
select from the options in the dialog box.

The widgets can be positioned on the Dashboard screen by dragging the blue 
header.

The configuration screen for each widget is accessed by clicking the small 
wrench-symbol in the blue header.

Page 31 of 121



Status screen
The Status screen shows the live status for a single ezeio™ at a time. The 
available ezeios are listed in the left on the screen and their online status is 
shown as a green dot if online with an Ethernet connection or a warning 
triangle if offline.  

In addition to the green dot, GSM equipped ezeios will show an antenna 
symbol and signal strength in green bars when they are connected by GSM.  

Even if the ezeio™ is online, it may take a few seconds for the status screen 
to refresh with live data.

Page 32 of 121



Live input status

All configured inputs of the ezeio™ are listed in the Inputs table. 

The Graph column shows a rough bar graph of the last minutes' data with the 
most recent data to the right.

The Value and Unit columns show the current converted value of the sensor 
input.

The Count column shows the number of pulse counts for the input. You may 
alter this value manually by clicking the wrench icon next to the counter.

The count value is stored in non volatile memory every 90 seconds and 
automatically restored on reset.

The Raw column shows the value from the hardware input before converting 
it to a real world unit.

The Alarms column shows the current status of the four possible alarm 
settings. Hover the mouse cursor over the symbols to see their meaning.

Output status and control

The outputs of the ezeio™ can be controlled directly with the on/off buttons 
in the output table. The drop-down box allows automatic shutoff after the 
selected time. 

Page 33 of 121



Thermostat status

If the ezeio™ is connected to one or more thermostats, they will 
automatically be listed on the status screen. The current temperature, set 
points, calls, override status and schedule settings are displayed and updated 
every few seconds.  

The temperatures are shown in the unit used in the schedule. 

The override status shows the number of minutes left on the override cycle. 
If the number shown is negative, that means the override is a demand-
response adjust.

The wrench-symbol in the leftmost column brings up a dialog box that allow 
for direct control over the demand-response feature.

As of this printing, the only supported thermostat is the T-32-P, available 
from eze System.

Event log

At the bottom of the screen, the ezeio™ event log is shown. Any recent 
events are temporarily highlighted.

Downloading log data

Select the input or inputs to download data from by checking the boxes, next 
to the input name, in the input list, and enter the desired time span in the 
From/To boxes or select from the quick presets, drop-down menu.

Click the Download button to start the download of a CSV (comma 
separated) file that may be opened in Excel, Calc  and many other programs.

Page 34 of 121



Viewing graph of log data

Select the input or inputs you want to graph by checking the boxes in the 
input list. Then enter the desired time span in the From/To boxes or select 
from the quick presets, drop-down menu.

Click the Graph button to view the graph.

The statistics to the right in the graph-window updates automatically if the 
graph view changes by zooming in/out.

Note that the “Area” and “Visible Area” values really only make sense if the 
sensor used is a power or flow sensor.

Controlling the graph
By hovering the mouse cursor over the graph, information about each 
sample will be shown.

The graph window allows zooming by highlighting a section with the mouse 
(drag from top-left to bottom right) or by using the mouse scroll wheel. 
Reset zoom by dragging right-to-left.

Panning is done by dragging using the right mouse button.

The legend allows turning on/off individual graphs by clicking on the “eye” 
icon in front of the name.

Page 35 of 121



Configure screen
Service status & settings

With the ezeio™ selected in the left hand column, click the Configure tab to 
get to the Service status and settings screen:

Service status
The top section shows when the service for this ezeio™ unit will expire, the 
number of SMS/Voice alarms remaining this month, and the number of API 
requests remaining for the current 24h interval.

Service settings

If the service settings are not shown, your account is managed by your 
installer/reseller. 
Please contact the person you purchased the ezeio™ from.

In the settings box, you may select the level of service desired for this 
ezeio™.  You may change the service level at any time, and the system will 
automatically pro-rate the expiration date based on the service time 
remaining.

Page 36 of 121



ezeio™ Configuration

         The Configure screen allows access to all the configurable parameters of each ezeio™.
Configuration can be done even if the ezeio™ is not accessible (off line). The 
changes are then committed as soon as the ezeio™ comes back on line.

Click the Configure tab and then select the ezeio™ to configure in the table 
to the left.

Resource tree

In the center of the page, the resources of the ezeio™ are shown in a 
structured tree form.  The tree can be expanded by clicking the plus icons.

Click the name of each object to see more information on that object. 

Click on an item on the list to view or modify 

Click on the Add-link to create new items

To commit changes, simply click the Save changes button. This will 
commit the changes to the database, and also synchronize the changes with 
the ezeio™. If the ezeio™ is temporarily unavailable, the changes will be 
transferred as soon as the ezeio™ communication is re-established.

Page 37 of 121



Inputs

Each ezeio™ can support up to 40 inputs. Each input has the following 
settings:

Input name
A user defined name to identify the input.

Unit
The unit for the input, for example “Volt”, 
“kW” or “C”.

Decimals to show
The number of decimals to show when the 
converted value of this input is displayed. 
Valid range is 0 – 8.

Autoscale
If this checkbox is checked, the two 
following controls (Max/Min value in 
graphs) are ignored and the graph min/max 
values will be automatically chosen to fit 
the data.  By default this is unchecked.

Max value in graphs
The maximum value on the vertical scale in graphs.  Only relevant when 
autoscale is inactive.

Min value in graphs
The minimum value on the vertical scale in graphs.  Only relevant when 
autoscale is inactive.

Display and Type/Conversion settings only affect the way the data is 
displayed. It does not change the raw stored data. 

Input type
The type of this input.  This defines how the raw value from the input will be 
converted to a user defined unit.  A number of standard conversions are 
selectable from the drop-down list, others require manual entry of units and 
conversion equations. (see following page)

Page 38 of 121



Input type – custom
If “Custom” is selected, more fields are displayed to allow customization; 
Raw-to-Unit, Unit-to-Raw, Digital Pulse and Text Status (See below). 

Input Raw to unit
The math used to convert from the raw input value to a real world unit.  The 
symbol “x” represents the unconverted input value in the equation.

DO NOT LEAVE THIS BOX BLANK.  It has to contain valid math to 
provide a value to the input.  If unsure, just enter “x” in this box.

The math boxes must to contain valid math expressions. 
The input raw value is represented by a lower case ‘x’.

Unit to input Raw
The math used to convert from the real world unit back to the raw input 
value.  This should be the inverse function of the Input Raw to Unit function. 

Examples of inverse functions:

Input Raw to Unit Unit to Input Raw

x*10 x/10

x*5+32 (x-32)/5

5000/x 5000/x

Simply speaking, if you take the output from the first function for any value 
of x, and plug that into the x of the second, you should end up with the value 
you started with.

If a “WARNING” text is displayed next to Verification, this means the 
second math is not the inverse function of the first. Please correct the math.

Page 39 of 121



Raw reading / ADC resolution
The built-in ADC converter converts the voltage on the input to a number 
between 0 and 1023 (10 bit). This number is further scaled internally to 0-
10000.

To calibrate the raw ADC reading to the desired unit, use a 2-point 
calibration and the helper feature in the web software. 

See Calibrating analog inputs on page 44 for details

The tables below are average readings and can be used as a guide for 
calibration. This table only apply to the physical inputs on the ezeio™.

0-5V

Input Raw

0.0V 0

2.5V 4882

5.0V 9765

0-10V

Input Raw

0.0V 0

5.0V 4927

10.0V 9855

0-30mA

Input Raw

0.0mA 0

4.0mA 1395

20.0mA 6975

0-50kOhm *

Input Raw

100Ω 107

1kΩ 902

10kΩ 4792

Note that when configured for resistance, the raw-to-Ohm relationship is not 
linear.

Other devices may use other scaling on the inputs. 
Consult the device manual for details.

Digital pulse input
Normally the value of an input represents a voltage, current or resistance. If 
the sensor connected is of pulse type (such as a S0 pulse), the input can be 
defined as a Digital Pulse Input by enabling this check box.

When this box is checked, the input value will reflect the time between the 
two last transitions from low (<0.9V) to high (>1.1V) on the input. The time 
is presented as milliseconds, and range from 4 to 99999999 (~28h). If no 
pulses are detected, the max value will be returned.

The shortest pulse that can be detected in this mode is 2ms.

When in Digital pulse input mode, the count register will automatically 
count up for each pulse.

The Digital Pulse input type is supported by the four inputs on the ezeio™ 
and the eze System “Wireless I/O Expander”. 

Consult the device manual for other device types.

Page 40 of 121



Text status
This allows displaying a text in addition to the value. For example, one may 
want to display “OPEN” and “CLOSED” based on the input value being 
low/high. This would be achieved like so:

Thus, if the value is 100 or less, the text “OPEN” will be displayed, and if 
the value is 101 up to 10000, the text “CLOSED” will be shown. Values 
larger than 10000 will show as blank.

Each line needs to have a number, a colon (:) and a text following the colon.

You may enter multiple text status lines. The numbers must be in increasing 
order. The program will search the list from top to bottom order. The first 
line with a number higher or equal to the current input value will be shown.

The text will be shown in the space for alarm status on the status screen, and 
in the widget “Live Input Alarm Table” on the dashboard. 

Alert messages may also show this text by using the #STAxx# designator in 
the message body (see Notes about the Message field page 61).

Page 41 of 121



Log interval
This setting selects how often the value on the input is logged to the 
database.  The actual log value will be the average for the log interval.

Input location
This defines the source from which the input receives its values. These can 
be from the ezeio™ unit, a ModBus device, a MicroLAN device or an eze 
System wireless expander. 

In addition to physical sensors or connected devices, input values can be 
software driven. The setting “Special/Software” allows script, external 
commands or API calls to set the value of the input.

Input locations for the ezeio™:

Source Description

Special/Software Script or API call

Input #1 ezeio, Input #1

Input #2 ezeio, Input #2

Input #3 ezeio, Input #3

Input #4 ezeio, Input #4

Input #5 Supply voltage (DC Power supplied to ezeio)

Input #6 CPU core temperature in Celsius (to 1 tenth degree)

Input #7 GPS Latitude, degrees * 1 000 000

Input #8 GPS Longitude, degrees * 1 000 000

Input #9 GPS Elevation, meters * 10

Page 42 of 121



 Input conversion helper dialogs (calibration)
The Linear analog and Pulse links are visible when the Input type and 
conversion is set to custom. 

These will open conversion helper dialog boxes useful for calibration.

The Use key will copy the math from the dialog into the Input Raw to Unit 
and Unit to input Raw conversion fields. Don't forget to click Save Changes 
after using the Custom helper function.

Also see the section about calibration on the following page.

Page 43 of 121



Calibrating analog inputs

With any type of sensor connected to an analog input, either directly to the 
ezeio™ or on one of the expansion modules, calibration may be necessary for 
accurate readings.

To calibrate the system you will need two reference points. Ideally these 
points should be well separated but within the expected operating range of 
the application.

In this example we will calibrate a current sensor, but the procedure is the 
same regardless of the type of sensor or unit.

1. Connect the sensor to the ezeio™ or the expansion unit and make sure we get 
a reading of the sensor on the status page in the raw column. Do not worry 
about setting up the correct type at this point. We will only need the raw 
reading.

2. Apply the first reference current to the sensor and let the sensor stabilize. 

Current sensor and reference meter, 5.67A

3. When stable, make note of the raw reading from the status page, and also 
what the reference current is, so in this example we got “1693 at 5.67A”

                          Status screen, RAW column for input 1 showing “1693”

Page 44 of 121



4. Apply the second reference current, let it stabilize and again note the RAW 
and the reference current. In our example, we read raw 58 at 0.015A.

We now have the data points we need. Navigate to the Configure->Input 
screen and select the input. In the Input Type box, select Custom. Then 
click the Linear Analog link to open the Two point calibration dialog:

5. In the dialog box, enter the raw and reference value currents in the Point1 
and Point2 fields as seen in the image above. 
Click the Use button to apply the conversion to the input.
Don't forget to click Save Changes to finish.

The input is now calibrated.

Page 45 of 121



Alarm settings

For every input, up to four (4) alarms can be defined. Each alarm has the 
following settings:

Alarm name
A user defined name to identify the alarm.

Threshold for alarm
The threshold where the alarm should activate.

Alarm holdoff
Delay in seconds. The input value will need to exceed the threshold for this 
time interval for the alarm condition to occur.

Threshold for restore
The threshold where the alarm condition should clear.

Restore holdoff
Delay in seconds. The input value will need to exceed the threshold for this 
time interval for the alarm condition to clear. 

If the alarm threshold is lower than the restore threshold, the alarm function 
is reversed. The alarm will activate when the input value is lower than the 
alarm threshold and restore when the input value exceeds the restore 
threshold.

If both thresholds are set to the same value, the alarm will never activate.

Page 46 of 121



Actions

Actions describe what should happen when an alarm condition occurs or 
restores.

There may be up to four (4) actions on each alarm, and four (4) actions on 
each restore.

The settings for each action are as follows:

Action name
A user defined name for the action

Action type
Depending on the action type 
selected, different options are 
presented. See below.

List of possible actions
Action Type Description See Page

Send Message Send a message to email, SMS, voice call, third 
party system and more

60

Log Event Record an event in the event log 66

Set Output Set or reset a local output 66

Set Counter Set a counter to some specific value 66

Increment Counter Count up a counter 66

Decrement Counter Count down a counter 66

Control Thermostat Adjust the set point or change operating mode of a 
thermostat

66

Modbus Coil Control Directly control a coil register on a connected 
Modbus device

67

Modbus Write Register Directly control a Holding register on a connected 
Modbus device

67

Page 47 of 121



Conditions

Conditions give you the option of executing an action only if certain 
conditions are fulfilled. Conditions add second layer of logic to alarms and 
actions.

For simple alarms, the conditions should be left at No Condition.

When selecting the condition type, additional controls are shown depending 
on the condition type.

Two conditions can be set for each action, and the logic can be either that 
both conditions have to be true at the same time (AND), or that at least one 
of them is true (OR).

The possible condition types are:

Condition Effect Required setting(s)

No condition No filter. The action will always execute. None

Input in alarm The action will only execute if the referenced 
input is in alarm state.

Input reference

Input restored The action will only execute if the referenced 
input is not in alarm state.

Input reference

Input less than The action will only execute if the referenced 
input value is less than a given value.

Input reference
Value (in ‘real’ unit)

Input more than The action will only execute if the referenced 
input value is more than a given value.

Input reference
Value (in ‘real’ unit)

Counter less 
than

The action will only execute if the referenced 
input counter register is less than a given value.

Input reference
Counter value

Counter equal to The action will only execute if the referenced 
input counter register is equal to a given value.

Input reference
Counter value

Counter more 
than

The action will only execute if the referenced 
input counter register is more than a given 
value.

Input reference
Counter value

Schedule active The action will only execute if the referenced 
schedule is in active state.

Schedule reference

Schedule not 
active

The action will only execute if the referenced 
schedule is not in active state.

Schedule reference

Output state The action will only execute if the referenced 
output has the given state.

Output reference
Output state (on/off)

Page 48 of 121



Outputs

Each ezeio™ supports up to 40 outputs. Each output has two possible states: 
on or off. 

Outputs can be controlled by events or states.  

Event controlling outputs
Event triggers include alarm actions, timer actions, schedule actions, email 
and text commands, or manual toggling of the buttons on the 
ezecontrol.com Status page. 

When triggered, the ezeio™ will send a single command to the selected 
output. This method will control the relay state until the next command is 
received. 

State controlling outputs 
Relays can be directly controlled by conditions. By checking the Use only 
conditions box, event commands and manual controls will be disabled. 
The ezeio™ will continuously force the state of the output as long as the 
conditions selected are true (see Conditions, page 48). 

The settings for each output are:

Output name
A user defined name for the output.

Output location
This defines the hardware where the 
output is located.

One-shot coil msg
This setting only applies to modbus 
connected output devices. If checked, 
the set command will only be sent when 
the output status changes. The default 
(unchecked) is that the modbus set command is repeated every 20 seconds.

Use only conditions
If this box is checked, the conditions will continuously be re-evaluated, and 
the output set accordingly. That means that any other attempts to control the 
output will be overruled. 

Leaving this box unchecked means that the condition settings are not used. 
The output state is set by manual commands, alarm actions, remote 
commands or script.

For more details on conditions, see Conditions, page 48.

Page 49 of 121



Schedules

The ezeio™ supports up to 20 schedules. 

Schedules can be used in condition logic to only cause actions during 
specified times, or can be used to directly trigger actions.

Each schedule can define up to four intervals, and each interval can be active 
on any day of the week.

To define a new schedule, click Schedules in the object tree, and then click 
Add schedule.

Select the days of the week when each interval should be active, and the start 
and stop time in 24h format (HH:MM). 

If the start time is before or equal to the stop time, the interval will not be 
processed. 

Up to four actions can be defined for when a schedule enters a defined 
interval, and an additional four actions can be defined for schedule interval 
exit.

For more information about actions, see Actions, page 47.

Timers

Timers are a simplified form of schedules. Up to 20 timers are supported for 
each ezeio™.

When a timer reaches its defined point in time, it will run the defined actions 
(up to four actions per timer), and count down its recursion count.

Recurrence can be unlimited or set between 1 and 254 counts. When the 
counter reaches zero, the timer will not trigger any more. Timers can be set 
to reoccur indefinitely by entering 255 in the count field. 

Leaving all drop down fields set to “- any -”, the timer will trigger every 
minute, until the count runs down to zero. Specify the minute, to limit 
triggering to once per hour. Specify the minute and hour to limit to once per 
day and so on. 

Timers can be set from external messaging, such as email. See Sending 
control commands, page 70 for details.

Every minute, on the minute Once, on Nov 12, 2025 at 10:47

Page 50 of 121



Thermostats / Thermostat schedules

The ezeio™ can communicate with up to 10 thermostats connected to the 
Modbus network. The thermostats are controlled by thermostat schedules 
that are defined under the Thermostats menu. 

Every ezeio™ supports up to four (4) thermostat schedules, and each 
thermostat schedule can control up to four (4) physical thermostats, with a 
total maximum of 10 thermostats per ezeio™.

To associate a thermostat to a thermostat schedule, first define the 
thermostat schedule, then find the thermostat under the Device menu, 
and select the appropriate thermostat schedule.

All thermostats that are associated with schedules will be listed on the status 
page automatically, where the current status of the thermostat will be shown.

Conditions for using alternate settings
Associated thermostats will be switched to alternate mode if the conditions 
selected evaluate to “true”.

Other settings / Stir
The stir feature monitors the activity of each thermostat, and will ensure that 
the fan runs with the set interval as a minimum. If the thermostat 
automatically uses the fan for heating or cooling, the stir timer is reset to 
avoid unnecessary fan activity.

Stir holdoff sets the maximum number of minutes the fan is allowed to be 
off.

Stir time sets the number of minutes the fan should run if there is no other 
activity. 

Page 51 of 121



Devices

The Devices branch in the configuration tree lists all the defined hardware 
in the system.

The first item is always the ezeio™ itself.

Do not delete or rename the ezeio™ controller device. 
It’s required by the system.

The other items are MicroLan, Wireless, and Modbus devices that the 
system has knowledge about.

Configuring Modbus Devices
To add a Modbus device, first ensure the bus address is unique (see the 
manual for the Modbus device for details on how to configure the specific 
device with its address and communication settings).

All devices sharing the Modbus communication line needs to be set for the 
same speed and format. The default is 19200 bps, 8 data bits, no parity.

Click the Devices root item in the configuration tree, and then click Add 
Device.

In the dialog box, select the type of device you are adding, enter its address, 
and click Add Device.

Devices listed have been tested for compatibility by eze System. Contact 
us to evaluate a new device for integration.

Be sure to give your new device a name so its easy to refer to in.

The device resources will now be available in the system. You can Add 
inputs/outputs and select the source from the Input location drop down 
menu. 

Page 52 of 121



Wireless devices
As of the release of this document, two wireless models of wireless 
expansion modules are available from eze System;

- Wireless I/O Expander (4 inputs / 2 outputs) p/n 130-0020-0
- Wireless Temp & RH (battery powered) p/n 130-0030-0

Both communicate with ezeio™ models equipped with 868/916 MHz radio 
modules.

A single ezeio™ can support up to nine (9) wireless devices.

Configuring wireless devices
Click the Devices root item in the configuration tree, and then click Add 
Device. Select Wireless device from the drop down menu and enter the 
serial number of the new device. Click Add Device and Save Changes.  
The device is now added to the system and you can add inputs and outputs 
tied to the RF units.

Wireless Pairing
After adding the device, power up the wireless expander. The signal LED 
will blink slow until the communication with the ezeio™ is established, this 
may take up to 4 minutes. Short (1 sec) flashes indicate normal operation 
and communication with the ezeio™. 

A paired expansion unit will only communicate with its designated ezeio™. 
Multiple radio networks can overlap, but each expansion unit will only 
communicate with a single ezeio™.

Break pairing
To break pairing, power cycle the Wireless expander 5 times, removing the 
power during the time when the LED is lit. The LED will blink rapidly on 
the 5th power up to indicate it is reset. 

Be sure to delete the device from the previously paired ezeio™ to avoid 
conflict.

Page 53 of 121



Script (premium feature)

Script is a premium feature that can be enabled for advanced programming 
of the ezeio™. Please contact eze System if you wish to use this feature.

If enabled, a “Script” option will be displayed in the resource tree and an 
online script editor is made available.

Please refer to the section about the Script language starting on page 88.

Page 54 of 121



System

The system screen has the following settings:

Controller name
A user defined name to identify the ezeio™.

Controller location
A user defined text to identify the ezeio's location.

System info address
If you enter an email address here, the system will send informational 
messages to this address when the ezeio™ communication with the server 
fails/restores, or when the ezeio™ changes from communicating over 
Ethernet to GSM and back. Copies of these emails are also sent to the 
accounts system info address (see System info address, page 68)

Time zone
The time zone where the ezeio™ is installed.

** SECURITY ALERT **
The fields under Access Control Settings enable external systems to 
access/control your ezeio™. To disallow any external access, leave these 
fields blank. If they are used, use strong passcodes and keep them safe.

Read passcode
This code is used to authorize external access to data, such as API functions 
and status requests. The code needs to be at least three characters long to be 
accepted. Only data retrieval is allowed with this code. No changes to the 
system are possible. To disable external access, leave this field blank.

Control passcode
This code is used to authorize external commands, such as output state 
changes or setting timers. The code needs to be at least four characters long 
to be accepted.

To disable external commands, leave this field blank.

Registration code
This code is used to authorize new users to the account, or to register the 
ezeio™ with a different account.

To allow a different account owner to take over the ezeio™, that user will 
need this code. In addition, the ezeio™ needs to be deleted from the current 
account in order for it to be re-registered.

Page 55 of 121



Allow firmware update
If unchecked, firmware updates will not be applied to this ezeio™. This may 
be desirable in critical systems, where the installation has passed extensive 
testing. Usually we recommend leaving this checked.

Allow config update
If unchecked, no configuration changes will be downloaded to the ezeio™. 
Changes are still allowed on the server, but they are not synchronized.

Allow dealer access
This checkbox is only visible if the ezeio™ is serviced by one of eze System's 
authorized resellers/dealer. The owner of the ezeio™ may choose to allow 
configuration access to the dealer by checking this box.

The name of the reseller is visible to the right of the checkbox. Click the 
name for contact information.

Delete controller
Click Delete controller if you want to remove the ezeio™ from your 
account. The ezeio™ will be returned to an internal “pool” and be made 
accessible to other account holders for re-registration – provided they have 
the correct Registration code.

Note that all settings, and the log history for the ezeio™ will be retained even 
if it's deleted. 

To move a ezeio™ from one account to another the ezeio™ first has to be 
‘deleted’ in order to be available to add to the new account.
Deleting an ezeio™ (Configure→System→Delete Controller) only 
removes the association with the account. 
It does not alter any configuration or captured data.

Ethernet settings
The settings for IP, Net mask, Gateway and DNS should normally be left 
blank, which will enable standard DHCP. The settings only apply to the 
physical Ethernet connection and if used, all four fields must have valid IP 
settings. 

If the IP settings are incorrect, the ezeio™ will not be able to 
communicate with the server. To temporarily change back to DHCP, 
apply the HALT jumper during power up. See page 14 for details.

Page 56 of 121



External server URL
This setting is used by the script function ExtAPICall (page 108). This 
function can be used to send a message from a script directly to a third party 
server, using html-post, json or xml formatting. The url must start with one 
of:

http:// or https:// 
- message parameters will be sent using http-post formatting.

json:// or jsons://
- message parameters formatted as a json object.

xml:// or xmls://
- message parameters formatted as xml.

The call will be to port 80 or port 443 (if using SSL). For verification of the 
data, a header “X-HASH” is added with a MD5 sum of the full submitted 
text concatenated with the read passcode from the ezeio™ configuration. See 
Verifying the validity of the data on page page 84.

Phone module PIN
This should be set to the PIN code on the GSM module. If the module does 
not have a PIN code programmed, this field should be left blank.

SIM card PIN
This should be set to the PIN code on the GSM SIM card. If the card does 
not have a SIM PIN code programmed, this field should be left blank.

GPRS APN, login name , password
These fields need to be set to the APN, login and password of the GSM 
operator. Contact your GSM service provider for details.

An incorrect APN / login name / password will prevent the ezeio™ 
from communicating. Make sure you have the correct settings.

Phone init string
Additional commands to the GSM module. Usually this should be left blank.

GPRS init string
Additional commands to the GSM module. Usually this should be left blank.

Phone module PIN, SIM card PIN, GPRS settings and init strings only applies to 
ezeio™ models with built-in GSM transceiver.

Page 57 of 121



Clone Controller
If the account has more than one ezeio™ associated, this function will allow 
copying all settings and data from any other ezeio™ to the current ezeio™. 
This will overwrite any settings and data that exists on the current ezeio™. 

For Cloning to work, the current ezeio™ need a service setting equal or 
higher than the ezeio™ that will be cloned.

Modbus speed
This setting selects the communications speed on the Modbus interface. 
Possible settings are 300 bps to 57600 bps. 19200 bps is the (default).

The port always use 8 data bits, no parity.

Use slow polling
Some Modbus hardware require a delay between data exchanges. If this 
checkbox is active, a 50ms additional delay is added between packets.

Custom protocol
This setting will disable the Modbus functionality completely, and allow the 
user to write custom script functions for the communication on the serial 
port. See the SerialSend fuction on page 110.

Type of controller
The hardware type of ezeio™ (usually 1)

Firmware version
The ezeio™ firmware version

Last system reset
Time and date of when the ezeio™ was last reset.

Last comm reset
Time and date of when the ezeio™ last renegotiated contact with the server.

Last contact
Time and date of when the ezeio™ last communicated with the server.

Last endpoint
IP-address and port of the ezeio™ when it last communicated with the server.

Last local IP
The local IP of the ezeio™ when it last communicated with the server.

Page 58 of 121



Actions
Inputs, Schedules and Timers can trigger actions.

List of possible actions:
Action Type Description See Page

Send Message Send a message to email, SMS, voice call, third 
party system and more

60

Log Event Record an event in the event log 66

Set Output Set or reset a local output 66

Set Counter Set an input counter register to some specific value 66

Increment Counter Count up an input counter register 66

Decrement Counter Count down an input counter register 66

Control Thermostat Adjust the set point or change operating mode of a 
thermostat

66

Modbus Coil Control Directly control a coil register on a connected 
Modbus device

67

Modbus Write Register Directly control a Holding register on a connected 
Modbus device

67

Page 59 of 121



Action: Send message

This will send a message to the defined destination. 

Possible Message Types Destination Field Format Examples Page

Email jsmith@mycompany.com 62

SMS Text US: +12125551234
Sweden: +46707123456

62

Twitter @mytiwitteraccount
*needs to be linked to twitter account.

63

HTTP Post http(s)://my.server.com/script 63

JSON Post json(s)://my.server.com/script 63

Pushover :abc123def456abc123def456abc123xy 64

Push to Speech !abc123def456abc123def456abc123xy 64

Exosite exosite://[CIK]:[ResourceID] 64

Voice US: 12125551234
Outside US:  01161555512344 (AU)

64

Control API call 
(to another ezeio)

Same account:  #AAA-000 
Different Account:  #AAA-000:password

65

SMS recipients must begin with a plus (+) and Country Code.

Voice recipients outside the USA must begin with 011 & Country Code.

You may combine destinations by separating them with commas or 
semicolons, like in this example:

It is possible to send an alarm message to email, twitter, HTTP POST and 
place a voice call to multiple recipients all on the same alarm. 
The Destination field is limited to 200 characters. 

Page 60 of 121

mailto:jsmith@mycompany.com


Notes about the Message field
After selecting Send message or Log event from the Action type drop 
down menu, a default message will be generated containing the Alarm name 
and Input name.

You may replace the message with your own text.  The message can be up to 
4000 characters long, and can contain special references to insert values 
from the system. References always start and end with a #-character.

This table lists the possible parameters:

Parameter Description

#VALx# Inserts the converted momentary value of input with number x.

#CNTx# Inserts the counter register value of input number x.

#OUTx# Inserts the current state (“on” or “off”) of output number x.

#SCHx# Inserts the current state (“active” or “inactive”) of schedule x.

#STAx# Inserts the translated input value text from the Text Status box under input settings.

Example of a message using references: 

Warehouse temperature is #VAL8# and exhaust fan is #OUTx#

The input/output/schedule number can be looked up by clicking the root 
nodes in the resource tree.

Up to four (4)  references are allowed in a single message.

Page 61 of 121



Email
To send a message to an email recipient, simply enter the email address in 
the Destination field. 

To enter multiple recipients, separate the addressees with a comma or a 
semi-colon. 

Each email will include boilerplate information such as ezeio™ name, reason 
for the alarm etc. To remove the boilerplate text and only send the message 
text, put the message in double quotes (“).

Please make sure that your email provider does not filter email from 
ezecontrol.com. If you are missing emails, please look in your spam 
folders.

Controlling the email subject

When sending emails, the subject field defaults to the text “ALARM” or 
“RESTORE” followed by the name of the resource that caused the alarm and 
the alarm name. 

By inserting a vertical line character “|” in the message, the subject line will 
be replaced with the text before the “|”, and the message body will be the 
text after the “|”.

Example: “This is my subject|This is the body text”

SMS Text
To send a text message, enter the recipients phone number, starting with plus 
(+) and the country code. Note that the country code is always required.

The message will include some boilerplate information (ezeio serial, location 
etc). To remove the boilerplate text and only send the message text, put the 
message in double quotes (“).

Page 62 of 121



Twitter
To send a message to a Twitter account, the destination should start with a 
'@', followed by the Twitter account name. The Twitter account needs to be 
linked to the ezecontrol account.

A pop-up link will be displayed when the Save Changes button is pressed. 
Be sure to click this link and log in to your Twitter account when asked to.

If the Twitter account name is followed by colon and one of  'name', 'url', 
'location', 'description', the corresponding account setting in Twitter will be 
changed.

Examples: 

@mytwitteraccount  (update status)
@mytwitteraccount:description (update twitter account description)

Twitter account messages should not be considered reliable alarm paths.

HTTP POST
To send a HTTP POST, enter the URL of the server starting with http:// or 
https://. 

The message will be sent with the following POST fields:

POST Field Name Description

serial ezeio serial number 

controllername ezeio name

controllerlocation ezeio location

source Source of the alarm (System/Timer/Script/Schedule/Input)

action ALARM or RESTORE

account Account number

accountname Account name

time Time of alarm (local time)

message Text of message

JSON POST
To send a JSON POST message, enter the URL of the server starting with 
json:// or jsons://

The message will be sent as a json object with the same fields as in the 
HTTP POST above.

Page 63 of 121



Pushover (http://pushover.net)
Pushover is a mobile app available for iOS and Android ideal for short 
messages. To send messages to your Pushover app, enter the destination as 
your Pushover User Key (32 characters, available under the app settings) 
starting with a colon. Example: :abc123DEF456abc123DEF456abc123Xy

See http://pushover.net for more information.

Push to Speech (http://pushtospeech.appspot.com)
Push to Speech is a mobile app available for Android that reads out loud the 
messages sent to it. There is no user interaction required to receive 
messages.
To send messages to your Push to Speech app, enter the destination as your 
Device Identifier (30 characters, from the app) starting with an exclamation 
mark. Example:  !abc123def456abc123def456abc123xy

See http://pushtospeech.appspot.com for more information.

Exosite (http://exosite.com)
The ezeio™ can send messages to the Exosite web services.
Enter the destination like this:  exosite://[CIK]:[ResourceID] 
The value is set to the content of your message.

See http://exosite.com for more information.

Voice
To dial a phone number and send a voice message, simply enter the 
telephone number in the Destination field. To enter multiple recipients, 
separate the telephone numbers with a comma. Each number will be dialed 
in turn, and the subsequent number will dialed only if the previous number 
does not acknowledge receipt of the call (recipients will be prompted to 
press five (5) to acknowledge). The number must not have any punctuation, 
no dashes, spaces or periods. 

Calls within the US must start with 1. Calls to destinations outside the US 
must start with 011 immediately followed by the country code.

The voice message will include boilerplate information, such as ezeio™ 
name/serial, instructions on how to acknowledge etc. To send only the text in 
the message field, enclose the message in double quotes (e.g. “message”).

Page 64 of 121

http://pushover.net/
http://pushover.net/
http://pushtospeech.appspot.com/
http://pushtospeech.appspot.com/
http://exosite.com/
http://exosite.com/


Control API call
If the destination starts with a #-character, the message is interpreted as a 
control API call to another ezeio™. Immediately following the #, enter the 
serial number of the remote ezeio™. If the remote ezeio™ is on the same 
account, no password is needed. If the remote ezeio™ is on a different 
account, enter a colon (:) followed by the control password (the control 
password is located system . 

In the message box, enter the desired parameters separated by comma. See 
the REST control API section, page 68 for more information.

Example to turn on output 2 for 10 seconds on ezeio™ XYZ-987: 

Destination: “#XYZ-987:secretpass”
Message: “output=2, cadence=1, duration=100”

Note that the ezeio™ that is controlled needs to have API service activated.

Page 65 of 121



Action: Log event

This action will simply log the message in the ezeio™ event log together with 
a time stamp.

Action: Set output

This action will directly affect an output on the ezeio™ or connected 
expansion device. After selecting a relay, two options are available:
Cadence allows you to select the state of the output. 
Cut off will act as a timer for the output. If zero is entered the output will 
remain in the selected state indefinitely, or until a different action changes its 
state. 

Action: Set counter

This action will set the Count register on the referenced input to a specific 
value.

Action: Increment counter

This increments the Count register on the referenced input.

Action: Decrement counter

This decrements the Count register on the referenced input.

Action: Control thermostat

If T32P thermostats are connected to your ezeio™, the control thermostat 
action allows you to override the scheduled operation, using the options 
shown below.

Command Options

System Mode Off, Heat, Cool, Auto

Fan Mode Off, On, Auto

Run Schedule No setting. Cancels override if applied.

Override setting Cool setpoint, Heat setpoint

Set Schedule Mode Standard, Alternate

  

Page 66 of 121



Action: ModBus coil control

This action allows you turn on or off a the coil of a selected ModBus device.

Action: ModBus write register

This action allows you to write a value to a specific write register of a 
selected ModBus device.

Page 67 of 121



Account screen
The account screen allows access to all settings for to manage account and 
users. Only account administrators are allowed to change account 
information and edit other users.

Depending on user privileges, there are up to three tabs on the account 
screen:

Account - Generic account information

Personal - Own settings

Users - Settings for the other users on the same account.

Account

The settings under this tab are informational in nature. They do not change 
the functionality of the eze™ system.

Contact email
The contact person and email is referenced in emails for supporting users on 
the account, and is also sent an informational email when new users register.

System info address
If you enter an email address here, the system will send informational 
messages to this address when an ezeio™ on this account fails/restores 
contact with the server, or when an ezeio™ changes from communicating 
over Ethernet to GSM and back. Copies of these emails are also sent to the 
ezeio™ system info address, see page 55.

Account status
By checking the Accept New Users checkbox, new users can register with 
the account, provided they have a ezeio™ serial number and registration code 
of an ezeio™ that is already enrolled with the account, see Adding users to an
existing account on page 10.

Personal

The personal tab allows access to information about the logged in user. The 
user can edit these settings if the edit own info privilege is set for the user.

If the user attempts to change the email address, a confirmation email will be 
sent to the new address. The user must retrieve a confirmation code from 
that email and enter it in the Confirmation Code field in order for the new 
email address to be accepted.

The Confirmation code is only required when changing email address.

Page 68 of 121



Users

The Users tab lists all users on the account, except for the logged in user. If 
there are no other users registered on the account, this list will be empty.

To add users, please refer to Creating accounts and users on page 9.

To see and edit information about a specific user, click on the row in the list.

The account administrator is able to change any information about the user, 
except for the login name.

Passwords are stored in encrypted form in the system, and can never be 
retrieved or shown. 
If a user has forgotten his/her password, the administrator may assign a 
new password, but the old password cannot be retrieved.

Log in
This check box must be checked to allow the user to log in.

Edit own info
This check box allow the user to change the information under the 
“Personal” tab.

Edit controllers
This check box allows the user access to the Config tab.

Remote control
Check this box to allow the user to control outputs and timers via the web. If 
this box is unchecked, the user will not see the Control Passcode on the 
System screen.

Release controllers
If this box is checked, the user can delete ezeios from the account.

Manage account
With this box checked, the user can access other users information and 
privilege settings.

Page 69 of 121



Sending control commands

Email

Timers and outputs can easily be controlled via email. You will need:

- The serial number of the ezeio.
- The Control passcode (from the Configure → System screen)
- The name of the output or timer you want to control.

Create a new email and sent it to {serial}@ezecontrol.com 

where {serial} is the serial number of the ezeio™. For example:  
xyz987@ezecontrol.com

The email subject can be left blank

The first line of the email shall be the Control passcode.

The following lines shall be commands. See  Control Commands, page 71.

If unsuccessful the system will reply referencing the error as 
communication, command syntax, or invalid ezeio ID or password.

Control via SMS (cellphone texting)

Just as the ezeio can be controlled through email, SMS (Short Message 
Service) can also be used. 

The message should be sent to: 

Region Access number

US, Canada: +1 916 281 9001

United Kingdom / Ireland: +44 7937 985 875 

Sweden: +46 769 439 907

Australia / New Zealand: +61 448 838 189

Any other region: +44 7937 985 875 

Send the message with ezeio serial number, passcode and commands 
separated by comma or line break.

See Control Commands, page 71 for possible commands and syntax.

Example:

SMS to 916 281-9001: “xyz987,mysecretpass,output fan on“

(turn on the output named “fan”)

The system will reply with a SMS message to acknowledge the action. If 
unsuccessful the system will reply referencing the error. 

Page 70 of 121



Unlike email commands, there will be no reply message if the ezeio ID or 
password is invalid.

 Control Commands

Using Email or Text messages (SMS), the following control commands are available:

Command Function Parameters

OUTPUT Directly controls an output Output name, State, [cutoff]
If cutoff is not given, 0 is default.

COUNTER Sets a counter register Input name, Value

TIMER Set/enable a timer Timer name, Time

STATUS Request status No parameters

THERMOSTAT Control a thermostat Tstat name, Command, {setpoint}
Command is one of:
  Heat {setpoint}
  Cool {setpoint}
  Alternate
  Standard
  Run

ADJUST Adjust a thermostat Degrees, [minutes]
If minutes is not given, 1h is default.

The system will reply to confirm the command was understood. 

Examples:

output warehouse lights on 
(turn on the output named "warehouse lights")

out warehouse lights on 20s 
("output" can be abbreviated, 20s means it will be on for 20 seconds)

timer sauna 18:00 
(trip the timer named "sauna" at 6pm, once)

timer sauna 6:15pm 
(am/pm is accepted also)

timer sauna off 
(disable the timer, set counter to zero)

timer sauna 1810 x12 
(colon in time is optional. Start at 6:10pm the following 12 days)

timer sauna thursday 9:00 
(Start on Thursday 9am, once)

timer sauna 3-27 13:45 
(MM/DD or MM-DD)

tIM SAUna FRI 11:23pM 
(case doesn't matter, and weekdays can be abbreviated, 3 chars min)

Page 71 of 121



Page 72 of 121



Server API

API access and security

The API can be accessed either through HTTP or HTTPS. We strongly 
advise against accessing API features through HTTP, since the 
communication in this case will be sent unencrypted. 

If at all possible, use HTTPS for API access.

In order to use the API features, the ezeio™ must have a service level that 
includes enough API calls for the specific application.

Click the Configure tab to set an appropriate service level for each ezeio.

Page 73 of 121



API authentication and example
All REST/JSON calls use the Digest auth (RFC 2617) method to validate 
credentials for accessing data. This avoids sending access credentials 
unencrypted even if SSL is not used, although we recommend using SSL 
whenever possible.

The user name is the ezeio™ serial number (e.g. 'XYZ-987'), and the 
password is the read-passcode for status.php and log.php calls, and the 
control-passcode for calls to control.php

Parameters may be passed by either the GET or POST method.

This is a simple example of how to call the log.php API from PHP code:

<?php
  $url = "https://ezecontrol.com/api/log.php"; // API URL

  $serial = "XYZ987"; // ezeio serial
  $pass = "supersecret"; // Read passcode
 
  $fields = array(
    "input" => 4, // input 4
    "from"  => "2010-08-22", // start time
    "to"    => "2010-08-24" // end time
  );

  $ch = curl_init($url);
  curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
  curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_DIGEST);
  curl_setopt($ch, CURLOPT_USERPWD, "$serial:$pass");
  curl_setopt($ch, CURLOPT_POST, 1);
  curl_setopt($ch, CURLOPT_POSTFIELDS, $fields);
  $result = curl_exec($ch); // send the request
  curl_close($ch);

  print_r (json_decode($result)); // process the response
?>

The API can also be called directly from a browser like this:

https://XYZ987:supersecret@ezecontrol.com/api/log.php?
input=4&from=2010-08-22&to=2010-08-24

Page 74 of 121

https://ezecontrol.com/api/log.php


Live status in JSON format via REST API

This API call returns the most current status of the ezeio™, including all 
inputs, outputs, thermostats and the last few log events.

https://ezecontrol.com/api/status.php

The password needs to be the “Read passcode” from the system setting.

The following parameters are recognized:

Parameter Range Description

logid (optional) The last log id from previous call (use if frequently calling the API 
to reduce the amount of data returned)

peek (optional) 0 (default), 1 If set to 1, the server will return the cached status rather than 
sending a request to the ezeio. This will speed up the request 
and reduce the data traffic to the ezeio (useful if ezeio is on 
cellular).
The cache is updated roughly every minute while ezeio is on a 
physical connection, and every 10 minutes while on cellular.

Example:

https://ezecontrol.com/api/status.php?logid=4821349

Historical data access in JSON format via REST API

This API call will return historical data related to a given input:

https://ezecontrol.com/api/log.php

The password needs to be the “Read passcode” from the system setting .

The following parameters are required:

Parameter Range Description

input 1 – 40 The input number

from YYYY-MM-DD[HH:MM] Year, month, day, and optionally hour and minute when the data 
should start.

to YYYY-MM-DD[HH:MM] Year, month, day, and optionally hour and minute when the data 
should end.

All timestamps are Zulu (GMT) time.

Example:

https://ezecontrol.com/api/log.php?input=4&from=2009-03-
05&to=2009-03-08  

Page 75 of 121

https://ezecontrol.com/api/status.php


Controlling the ezeio™ via REST API

The following API call allows direct control of several features:

https://ezecontrol.com/api/control.php

The password needs to be the “Control passcode” from the system setting.

The following parameters are required in each call:

Parameter Range Description

output
counter
input
timer
thermostat
thermostatschedule

See below See below for required parameters for each control type

Direct output control : 'output'
Use this command to directly control the output state.

Parameter Range Description

output 1 – 40 The number of the output to control

cadence 0 – 7 (see below) The cadence to apply

duration 0, 1 – 65535 Number of 1/10th  seconds to run this cadence before turning the 
output off again. 0 = infinite

Example, turn on output 1 for 2 seconds:

https://ezecontrol.com/api/control.php?
output=1&cadence=1&duration=20  

Cadence Pattern

0 Off

1 On

2 100ms on / 900ms off (0.1s pulse every second)

3 1s on / 9s off (1s pulse every 10s)

4 2s on / 58s off (2s pulse every 60s)

5 100ms on / 100ms off (5Hz blink)

6 0.5s on / 0.5s off (1Hz blink)

7 1s on / 1s off (0.5Hz blink)

Page 76 of 121

https://ezecontrol.com/api/control.php


Set input counter : 'counter'
Use this command to change the value in one of the counter registers.

Parameter Range Description

counter 1 – 40 The number of the input/counter

value 0 – 2^31 The new value of the counter

Example, set the counter value on input 5 to 12345:

https://ezecontrol.com/api/control.php?
counter=5&value=12345

Set input value: 'input'
Use this command to change the value of one raw input value.

Parameter Range Description

input Min 1 character The name of the input

value -2^31 – 2^31 The new raw value of the input

Example, set the counter value on input 5 to 12345:  

https://ezecontrol.com/api/control.php?
input=5&value=12345

Page 77 of 121



Set timer: 'timer' 
Use this API to set up an existing timer.

Parameter Range Description

timer 1 – 20 The timer number to set up

year (optional) 2000 – 3000 Year.  If not set, default is “any”.

month (optional) 1 – 12 Month.  If not set, default is “any”.

day (optional) 1 – 31 Day of the month.  If not set, default is “any”.

weekday (optional) 0 (Monday) – 6 (Sunday) Weekday. If not set, default is “any”.

hour 0 – 23 (24h format) Hour – required 

minute 0 – 59 Minute - required

count (optional) 1 – 255 - Number of times the timer shall be executed.  
- Set to 255 to repeat forever. 
- Default is 1.

At a minimum, either hour/minute or count needs to be given for the 
command to be accepted.

Example, Trip timer 1 once, next Tuesday at 8:15pm

https://ezecontrol.com/api/control.php?timer=1&
weekday=2&hour=20&minute=15 

Example, Change the count without affecting the time setting:

https://ezecontrol.com/api/control.php?timer=1&count=5 

Page 78 of 121



Control thermostat: 'thermostat'
This API controls a thermostat directly
To leave a setting unchanged, just omit the parameter from the command.

Parameter Range Description

thermostat 1 – 31 Thermostat modbus polling address

setHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F)
Setpoint is immediately applied, and the override timer will start 
automatically. When the override timer runs out, the thermostat 
will reset to its programmed setpoints.

setCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint – see setHeat

adjHeat 0 to -150 Adjust the heat setpoint down this number of 1/10th degrees
minAdjust need to be non-zero for this command to work

adjCool 0 to 150 Adjust the cool setpoint up this number of 1/10th degrees

minAdjust 0 (disable) to 1439 Number of minutes the system will use the adjHeat/adjCool 
settings before it returns to normal proramming.

setLock “ON”, “OFF” If set to “ON”, the keypad is locked and will not accept any user 
input.

setScheduleMode “AUTO”, “STANDARD”, 
“ALTERNATE”

Force the thermostat to use either the standard or the alternate 
settings from the controlling thermostat schedule. This overrides 
the condition setting in the schedule.
AUTO returns to programmed state.

setSysMode “OFF”, “HEAT”, “COOL”, 
“AUTO”

Set the operating mode of the thermostat.

setFanMode “OFF”, “AUTO”, “ON” Set the fan operating mode of the thermostat. Note that not all 
modes are supported by all thermostats.

newDataLatch 0, 1 If set to 1, the setHeat/setCool/setSysMode/setFanMode settings 
will be applied and override any other changes until latch is 
released.

Example; adjust +/-3 degrees for 90 minutes on thermostat on address 5

https://ezecontrol.com/api/control.php?
thermostat=5&
minAdjust=90&
adjCool=30&
adjHeat=-30

(line breaks added for clarity)

Page 79 of 121



Modify thermostat schedule: 'thermostatschedule'
This API controls the settings of a thermostat schedule.
To leave a setting unchanged, just omit the parameter from the command.

Parameter Range Descriptiont

thermostatschedule 1 – 4 Thermostat schedule number (required)

day 1 (Monday) – 7 (Sunday) Comma separated list of which days in the schdeule that the 
change will apply to (required)

interval 1 (morning), 2 (day), 
3 (evening), 4 (night)

Comma separated list of which intervals for each day the 
change will apply to (required)

stdHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F), standard 
schedule mode.

stdCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint, standard schedule mode.

stdSysMode “OFF”, “HEAT”, “COOL”, 
“AUTO”

System mode, standard schedule mode.

stdFanMode “OFF”, “AUTO”, “ON” Fan mode, standard schedule mode.

stdStart “00:00” – “23:59” Time of day when this interval starts, standard schedule mode. 
Be careful not to set the interval start times to the same value, 
and make sure the start times are sorted.

altHeat 150-400 (1/10 Celcius)
500-950 (1/10 Farenheit)

Heating setpoint in 1/10th degrees. (so 745 = 74.5 F), alternate 
schedule mode.

altCool 150-450 (1/10 Celcius)
460-990 (1/10 Farenheit)

Cooling setpoint, alternate schedule mode.

altSysMode “OFF”, “HEAT”, “COOL”, 
“AUTO”

System mode, alternate schedule mode.

altFanMode “OFF”, “AUTO”, “ON” Fan mode, alternate schedule mode.

altStart “00:00” – “23:59” Time of day when this interval starts, alternate schedule mode. 
Be careful not to set the interval start times to the same value, 
and make sure the start times are sorted.

OverrideMax 0 (disable) to 1439 Number of minutes the system will stay in override before it 
automatically resets to programmed settings.

AllowOverride 0, 1 If set to 1, manual override (at the thermostat) will be allowed. 
If set to 0, the thermostat keypad is locked from user input.

Example; Change the standard cooling setpoint in thermostat schdeule 1, all 
weekdays, day and night intervals to 79.5F.

https://ezecontrol.com/api/control.php?
thermostatschedule=1&
day=1,2,3,4,5&
interval=2,3&
stdCool=795

(line breaks added for clarity)

Page 80 of 121



Spreadsheet integration

Microsoft Excel® and LibreOffice Calc can be linked to the ezeio™ system 
so that the spreadsheet automatically updates with current data.

To use this feature, make sure the Configure→System→Read Passcode is 
set and that the service level allows API access.

Microsoft Excel®
These instructions are for Office 2013. Other version may differ.

In Excel, select Data→From Web, then enter the following URL in the 
browser window:

https://ezecontrol.com/api/inputsnapshot.php?
ser=SERIAL&pw=PASSWORD

(replace SERIAL and PASSWORD accordingly. The password is the Read 
Passcode from Configure→System)

Click Go. The window will populate with data from your ezeio™. 

Click one of the yellow arrows to select the table, and then Import to insert it 
in your spreadsheet.

Right-click the top-left cell in the table to set up auto refresh. Refer to Excel 
help documents for more detail.

Page 81 of 121

https://ezecontrol.com/api/inputsnapshot.php?ser=SERIAL?pw=PASSWORD
https://ezecontrol.com/api/inputsnapshot.php?ser=SERIAL?pw=PASSWORD


LibreOffice Calc
These instructions apply to version 5.1 of LibreOffice. Other versions may differ.

In Calc, select Sheet→Link to External Data...

Enter the URL to your controller data in the URL of External Data 
Source field using the format below, and press Enter.

https://ezecontrol.com/api/inputsnapshot.php?
ser=SERIAL&pw=PASSWORD

(replace SERIAL and PASSWORD accordingly. The password is the Read 
Passcode from Configure→System)

Select the HTML_LiveInputStatus item list and click OK to insert the data 
into your spreadsheet.

Page 82 of 121

https://ezecontrol.com/api/inputsnapshot.php?ser=SERIAL?pw=PASSWORD
https://ezecontrol.com/api/inputsnapshot.php?ser=SERIAL?pw=PASSWORD


Automatic export (push)

The ezeio™ system supports pushing input log data to a third-party server. 
Each input can be set up to push data to a unique external server/service. 
There are several export protocols, most of which are vendor specific. The 
first protocol, “JSON”, is generic and public, and is defined here.

Exporting using JSON push
To set up JSON push export, select “JSON” in the Export to drop-down on 
the input setting screen. Enter the 
URL of the receiving server in the 
Service URL box. The export 
function supports http and https 
POST. In the Point ID box, enter 
an identifier to be used on the 
remote system to identify this 
input. This can be any text or 
number. The Parameters field is 
not used for JSON push.

The system will start exporting data as soon as the configuration is saved. 
The export process runs every 3 minutes and is not adjustable.

JSON push schema
The message sent to the remote server has the following structure:

{ 
  "ser" : "ezeio serial",
  "inp" : "name of the input in the ezeio config",
  "pid" : "ID of the input as set by the Point ID field",
  "unit": "the unit of the input",
  "salt": "random string",
  "data": [
     { 
       "time": "timestamp for the sample in ezeio's local time",
       "raw" : "raw input value",
       "val" :  converted input value,
       "cnt" : "input's counter value"
     },
     { Additional samples, up to 200 per call }
  ]
}

Expected return value (acknowledgement)
The receiving service is expected to return the timestamp of the last 
processed sample. This will be the starting point for the next batch of data 
sent from the server. The expected return format is as follows:

{ 
  "result" : "timestamp of last sample"
}

Page 83 of 121



Verifying the validity of the data
Each call from the ezeio™ system will include a HTTP header value called 
X-HASH. The value of this header is the MD5 sum of the full JSON data 
with the ezeio™ read passcode added to the end. If the receiving service has 
knowledge of the read passcode, it can easily verify that the data comes from 
a valid source by checking this hash against the received data. 

An example in PHP is below.

<?php
   define("READPASS", "verysecretpasscode");

   $json = file_get_contents('php://input');

   if(!isset($_SERVER["HTTP_X_HASH"]))
      die("ERROR: Missing hash");
   if(md5($json . READPASS) != $_SERVER["HTTP_X_HASH"])
      die("ERROR: Hash mismatch");
   if(($data = json_decode($json, true)) == NULL)
      die("ERROR: Invalid payload");

   foreach($data["data"] as $sample) {
      // process the sample here
      $lastprocessed = $sample["time"];
   }

   // return the timestamp of the last processed sample
   $r = array("result" => $lastprocessed);
   print( json_encode($r) );  
?>

For simplicity, this example has passcode hardcoded, but the user may 
support multiple ezeios with unique passcodes by retrieving the ezeio serial 
number from the JSON data before checking the hash validity.

Page 84 of 121



BuildingOS export
BuildingOS by Lucid Design Group provides advanced visualization and 
analytics of energy usage suitable for larger organizations and kiosk type 
applications. More information is available at 
http://luciddesigngroup.com/buildingos

To export data to BuildingOS, enter the following:

Field Content Example

Import/Export BuildingOS export

Service URL Server URL rpc.buildingdashboard.net/xmlrpc/dashboard/

Point ID Point name MyPointName

Parameters User:Passcode MYLOGIN:MYPASS

New data will be uploaded to the BuildingOS system every 180 seconds.

EnergyStar export
EnergyStar provides a free service called Portfolio Manager, designed for 
property managers to track and benchmark energy usage.

To use the EnergyStar system, you need to create an account at 
https://portfoliomanager.energystar.gov/pm/login.html

Make sure the meters you want to upload to are shared and allowed to 
“Exchange Data”.

Find the meter ID by going to the “Edit Basic Meter Information” page. The 
last number in the URL is the meter ID as highlighted below: 
https://portfoliomanager.energystar.gov/pm/meter/edit/7654321

To export data to Portfolio Manager, enter the following:

Field Content Example

Import/Export EnergyStar export

Service URL Leave blank

Point ID Meter ID from PM 7654321

Parameters Leave blank

New data will be uploaded to Portfolio Manager once every hour.

Page 85 of 121

http://luciddesigngroup.com/buildingos
https://portfoliomanager.energystar.gov/pm/login.html
https://portfoliomanager.energystar.gov/pm/meter/edit/7654321
https://portfoliomanager.energystar.gov/pm/meter/edit/7654321


eSight export
eSightEnergy provides a powerful software tool for data analytics, including 
reporting and billing functions. More information is available at 
http://www.esightenergy.com.

To export data to the eSight system, enter the following:

Field Content Example

Import/Export eSight export

Service URL URL of service http://test.esightenergy.com/esight/ws/

Point ID Import point SITENAME.POINTNAME

Parameters Leave blank

New data will be uploaded to the eSight system every 180 seconds.

Exosite export
Exosite is a IoT dashboard SaaS provider. It is primarily suitable for resellers 
that want to customize and brand the user interface for their clients. To use 
Exosite you have to create an account at http://exosite.com and create 
the “Devices” and “Data points” you want to use.

Each device in the Exosite system will be assigned a “CIK” code, and each 
data point will have a “RID” code. You will need to enter both these codes in 
the ezeio™ system to export data.

To export data to Exosite, enter the following:

Field Content Example

Import/Export Exosite export

Service URL Device CIK 9770a9f7b00549c67a5a8a34e64a1c9ce17085b2 

Point ID Data point RID 94bf61241e71e7841049d624afe746c8ca2546d5 

Parameters Leave blank

Page 86 of 121

http://www.esightenergy.com/
http://exosite.com/


FTP export
The ezeio™ System can upload a FTP file once a day with hourly data. An 
example of an uploaded file is shown below

The file name is formatted like this:

YYYY-MM-DD_UPLOADHOUR_CONTROLLERID_INPUTNO.txt

FILE “2014-02-20_00_AAC-200_21.txt”
–----------------------------------
2014-02-19 01 METER123 13176
2014-02-19 02 METER123 13177
2014-02-19 03 METER123 13178
2014-02-19 04 METER123 13178
2014-02-19 05 METER123 13179
2014-02-19 06 METER123 13180
2014-02-19 07 METER123 13181
2014-02-19 08 METER123 13182
2014-02-19 09 METER123 13183
2014-02-19 10 METER123 13184
2014-02-19 11 METER123 13184
2014-02-19 12 METER123 13185
2014-02-19 13 METER123 13187
2014-02-19 14 METER123 13187
2014-02-19 15 METER123 13188
2014-02-19 16 METER123 13189
2014-02-19 17 METER123 13190
2014-02-19 18 METER123 13191
2014-02-19 19 METER123 13193
2014-02-19 20 METER123 13194
2014-02-19 21 METER123 13195
2014-02-19 22 METER123 13196
2014-02-19 23 METER123 13198
2014-02-19 24 METER123 13199 

To enable FTP export, enter the following:

Field Content Example

Import/Export FTP 1h export

Service URL FTP server/path my.ftp.server.com/directory

Point ID Input name METER123

Parameters USERNAME:PASS ftplogin:ftppass

The file will be uploaded every 24 hours after midnight local time.

Page 87 of 121



Script language

Script introduction

The ezeio™ system supports the PAWN script language. PAWN has a C-like 
syntax and executes completely inside the ezeio™, allowing users to add 
custom functionality to the ezeio™.

This manual documents only the custom functions added to the language for 
interaction with the ezeio™ resources. We assume the reader already has a 
general understanding of writing computer code, and should with the help of 
the PAWN language guide (http://ezesys.com/file/9) be able to learn 
the specifics of the language.

Help with programming
We recognize that mastering the scripting features of the ezeio™ requires 
significant skill in analytics and programming. This manual and related 
documentation is not enough to learn how to program from scratch. You will 
need prior knowledge related to software development to be able to use the 
ezeio™ scripting efficiently.

If you have any prior experience with JavaScript, C, Java, Perl or similar 
languages, PAWN will look very familiar to you, and looking at our 
examples in this manual should get you going quickly.

eze System offers programming services on hourly basis. If you have a 
specific feature request, please contact us.

Capabilities
The PAWN language is powerful enough to create very complex 
functionality. Inputs, outputs, timers, schedules, alarm events and reporting 
features are available to the script through the custom functions defined in 
this manual, and the language can handle basic math, text strings, state 
machines and complex logic. 

Compiled code can grow up to 64kB and use up to 6kB of RAM.

The ezeio™ executes over 100k instructions per second.

Page 88 of 121



Event-driven design
Scripts written for the ezeio should be “event driven”. The ezeio™ defines a 
number of system events that are suitable as containers for user logic. There 
should be no “main loop” in the user code, as that would block the ability to 
process system events. Instead, design your code to react on the events, and 
as soon as you finish processing, return from the event call to allow the next 
event to be processed.

For example, let's say you want to monitor two inputs and set an output if the 
first input level exceeds the second. One recommended way to do this is:

@Tick(uptime) // called every second
{
  if( GetInputValue(1) > GetInputValue(2) )
    SetOutput(1, 1); // turn the output on
  else
    SetOutput(1, 0); // turn the output off
}

The if-statement above will be processed once every second, and the output 
set according to the result of the comparison of the inputs.

Processing the whole condition will be very quick (less than a millisecond), 
so there will be plenty of time for other things to happen in your script.

String handling
The PAWN language defines strings as being either packed or unpacked. The ezeio™ 

supports only packed strings, meaning that each character is stored in a single byte.

Please refer to the PAWN documentation for further details.

Sleep-function
The sleep() function defined in PAWN accepts one integer parameter, and 
will suspend the script for the number of milliseconds given. Any system 
events that occurs while the script is suspended will be queued, and called in 
the order they occurred when the time expires. If the sleep was more than 
one second, only the first Tick-event will be processed. The queue can hold 
up to 32 events. If more events occur, they will be lost.

Please be aware of this when using the sleep() function.

Page 89 of 121



Script function library
The ezeio™ support most of the language constructs defined in the PAWN 
language guide, including most of the functions for floating point math and 
the “proposed function library”.

 In addition, the following functions are also supported:

Index of ezeio specific functions

Configuration interface functions
SetOutput(outputno, cadence, [cutoff]).......................................92
GetOutputState(outputno)..........................................................92
GetInputValue(inputno)...............................................................93
SetInputValue(inputno, newvalue)..............................................93
GetInputCount(inputno)..............................................................94
SetInputCount(inputno, newcount).............................................94
GetInputState(inputno)...............................................................94
GetScheduleState(scheduleno)..................................................95
GetSystemStatus(item)..............................................................95

Calendar and time functions
GetSecond()...............................................................................96
GetMinute()................................................................................96
GetHour()...................................................................................96
GetDay().....................................................................................96
GetMonth().................................................................................96
GetYear()....................................................................................96
GetWeekday()............................................................................96
SetTimer([timerno], timeoutms, repeat)......................................97

Mathematical functions
Float:fabs(Float:value)................................................................98
fround(Float:value, [method])......................................................98
Float:ffract(Float:value)...............................................................98
Float:fsqrt(Float:value)................................................................98
Float:flog(Float:value, [Float:base])............................................98
Float:fpow(Float:value, Float:exponent)......................................99
Float:fsin(Float:value).................................................................99
Float:fcos(Float:value)................................................................99
Float:ftan(Float:value).................................................................99
Float:fasin(Float:value)...............................................................99
Float:facos(Float:value)..............................................................99
Float:fatan(Float:value)...............................................................99
Float:fatan2(Float:y, Float:x).......................................................99
random([max])............................................................................100
min(value1, value2)....................................................................100
max(value1, value2)...................................................................100
clamp(value, min, max)..............................................................100

Page 90 of 121



float2cell(Float:value).................................................................100
Float:cell2float(value).................................................................100
qsort(count, data[]).....................................................................101
fqsort(count, Float:data[])............................................................101

Language functions
heapspace()...............................................................................102
numargs()...................................................................................102
getarg(argumentno, [index]).......................................................102
setarg(argumentno, [index], value).............................................102

String functions
tolower(character).......................................................................103
toupper(character)......................................................................103
strlen(string)...............................................................................103
strcopy(dest[], const source[], [maxlength])................................103
strcmp(string1[], string2[], [ingorecase], [length])........................104
strcat(dest[], source[], [maxlength]).............................................104
strdel(string[], start, end).............................................................104
strfind(string[], sub[], [ignorecase], [index]).................................105
strins(dest[], src[], index, [maxlength])........................................105
strmid(dest[], source[], start, end, [maxlength])...........................105
strval(string, [index])...................................................................106
valstr(dest[], value).....................................................................106
memcpy(dest[], source[], index, length, maxlength)....................106
strformat(dest[], maxlen, format[], [...])........................................107

Communication functions
PDebug(format[], ...)...................................................................108
ExtAPICall(wParam, lParam, format[], ...)...................................108
ModbusSend(address, command, length, data[]).......................109
getThermostat(channel, address, register).................................109
setThermostat(channel, address, register, value, lock)...............110
SerialSend(length, data[])...........................................................110

Library functions
GetTime(time[time_s], [UTC=false])...........................................111
Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b).....................111
SunPosition(UTCtime[time_s], Float:latitude, Float:longitude, &Float:elevation, 
&Float:azimuth)..........................................................................112
Float:Dewpoint(Float:RH, Float:T, [Farenheit=false])..................113
Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false]).....113

System events
@Tick(uptime)............................................................................114
@Alarm(sourcetype, sourceid, alarmno)....................................114
@Restore(sourcetype, sourceid, alarmno).................................114
@Timer(timerno)........................................................................115
@ModbusReply(address, command, length, data[])...................115
@SerialData(length, data[])........................................................116

Page 91 of 121



Configuration interface functions

SetOutput(outputno, cadence, [cutoff])
Use this function to directly control an output.

Parameter Range Description

outputno 1 – 40, required Which output to control.

cadence 0 – 7, required 0 = off
1 = on
2 = 100ms on, 900ms off
3 = 1s on, 9s off
4 = 2s on, 59s off
5 = 100ms on, 100ms off (5Hz blink)
6 = 500ms on, 500ms off (1Hz blink)
7 = 1s on, 1s off (0.5Hz blink)

cutoff 0 – 65535, optional. 
Defaults to 0 (infinite)

Number of 1/10th seconds to run the cadence. When the cutoff 
time expires the output will be turned off.

This function does not return a value.

Example: Turn on output 2 for 10 seconds:
SetOutput(2, 1, 100);  // cutoff 100 is 10 seconds

GetOutputState(outputno)
Read the current status of an output

Parameter Range Description

outputno 1 – 40, required Which output to check

The return value is 1 if the output is active (on) and 0 if the output is inactive 
(off).

Example: Check the status of output 8
if(GetOutputState(8)) 

// code to run if output is on

Page 92 of 121



GetInputValue(inputno)
Reads the raw value from an input.

Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is the raw reading from the input. The unit depends on the 
type of input :

Standard 0-10V input: Return raw mV, 0=0V, 10000=10V
Current 0-30mA input: Return 29uA units, 0=0mA, 1000=2.9mA, 6820=20mA
Pulse type input: Readout is ms between pulses (see below)
MicroLAN/Modbus sensors: Depends on sensor type (see below)

Example: Read the value from input 2 and assign the value to a variable.
in2mV = GetInputValue(2);

Example: Read the value from a microlan temperature sensor on input 5 as 1/10 th C
Celcius = (10*GetInputValue(5))/16-55;

Example: Read the value from a microlan temperature sensor on input 1 as F
F = (100*GetInputValue(1))/888-67;

Example: Read power as kW from a pulse meter with 500 pulses per kWh
kW = 7200/GetInputValue(8);

SetInputValue(inputno, newvalue)
Set an input raw value to the specified value

Parameter Range Description

inputno 1 – 40, required Which input to set

newvalue -2147483648 – 
2147483647, required

New value

This function does not return a value.

Important: The input source must be configured as “Special/Software”.

Example: Set the value of input 12 to 3456
SetInputValue(12, 3456);

Page 93 of 121



GetInputCount(inputno)
Reads the counter value from an input.

Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is the current counter value for the input.

Example: Read the counter value from input 2 and assign the value to a variable.
mycnt = GetInputCount(2);

SetInputCount(inputno, newcount)
Set an input counter counter to a new value.

Parameter Range Description

inputno 1 – 40, required Which input to set

newcount 0 – 2147483647, 
required

New value of the counter

This function does not return a value.

Example: Set the counter of input 5 to 456
SetInputCount(5, 456);

GetInputState(inputno)
Reads the current alarm state from the input.

Parameter Range Description

inputno 1 – 40, required Which input to read from.

The return value is a bitmap with four bits indicating the status of each of the 
four alarms for this input. Bit 0=first alarm, Bit 3=fourth alarm.

Example: check the state of the third alarm for input 5:
if(GetInputState(5) & 0x04) // 0x04 = binary 0100

// Code to run if alarm was active

Page 94 of 121



GetScheduleState(scheduleno)
Read the current status of a schedule

Parameter Range Description

scheduleno 1 – 20, required Which schedule to read status from

The return value is 1 if the schedule is active, 0 if the schedule is inactive.

Example: Check the status of schedule 1
if(GetScheduleState(1)) 

// code to run if schedule is active

GetSystemStatus(item)
Read the current status of a system status

Parameter Range Description

item See below Identifies the system status item requested

Value Description

sysLastHostMessage Number of seconds since last good message from the host was received

sysGPSLat GPS Latitude ( x 1 000 000). Only valid with 3G module and GPS antenna.

sysGPSLong GPS Longitude ( x 1 000 000). Only valid with 3G module and GPS antenna.

sysGPSElev GPS Elevation ( x 1 000 000). Only valid with 3G module and GPS antenna.

sysMLOK 1 if any Microlan devices are detected. 0 if not.

sysEthOK 1 if a physical Ethernet connection is detected. 0 if not. 

sysRFOK 1 if a short-range radio is detected. 0 if not.

sysGSMAvail 1 if GSM/3G modem is detected. 0 if no modem.

sysGSMSIMOK 1 if the SIM card is detected. 0 if not.

sysGSMOK 1 if the GSM modem is enrolled with the carrier network. 0 if not.

sysIP The assigned local IP as a 32 bit word.

sysGSMActive 1 if the GSM link is being used for communication. 0 if not.

sysGSMRSSI The RSSI (received signal strength) reported by the GSM module in dBm.
-113 is really weak, -50 is perfect.

sysGSMMode The communication mode of the GSM module. One of:
  1 = GSM, 2 = GPRS,  3 = EDGE, 4 = WCDMA, 5 = HSDPA, 6 = HSUPA,  7 = HSPA

sysGMTOfs Offset in seconds from GMT

sysEpochTime Current time in Epoch (seconds)

sysUpTime Number of seconds since ezeio reset last

Page 95 of 121



Calendar and time functions

GetSecond()
Return the current second from the real-time clock.
This function does not have any parameters.
The return value is the current second, in the range 0-59.

GetMinute()
Return the current minute from the real-time clock.
This function does not have any parameters.
The return value is the current minute, in the range 0-59.

GetHour()
Return the current hour from the real-time clock.
This function does not have any parameters.
The return value is the current hour, in the range 0-23.

GetDay()
Return the current day of the month from the real-time clock.
This function does not have any parameters.
The return value is the current day, in the range 1-31.

GetMonth()
Return the current month from the real-time clock.
This function does not have any parameters.
The return value is the current month, in the range 1-12.

GetYear()
Return the current year from the real-time clock.
This function does not have any parameters.
The return value is the current year, in the range 2000-3000.

GetWeekday()
Return the current year from the real-time clock.
This function does not have any parameters.
The return value is the current weekday, in the range 0 (Monday) through 
6 (Sunday).

Page 96 of 121



SetTimer([timerno], timeoutms, repeat)
Set a millisecond timer. The timer will generate a @Timer event when the 
timeout is reached. Note that these timers are different from the timers in the 
configuration.

Parameter Range Description

timerno 1 – 4, optional Which timer to set. If this parameter is omitted, the function will 
use the first timer that is not running.

timeoutms 0 or 1 to  2147483647, 
required

Number of milliseconds before generating the @Timer event.
If this parameter is 0, the timer will be cancelled and the @Timer 
event will not be generated.

repeat 0, 1 (optional) If set to 1, the timer will automatically reset and trip again. 
Defaults to 0.

Returns the timer number that was set, or 0 if no timer was set..

Example: Set timer 3 to expire in 1.5 seconds.
SetTimer(3, 1500);

Page 97 of 121



Mathematical functions

Float:fabs(Float:value)
Return the absolute value of a floating point value

Parameter Description

value Value to return absolute value of

Returns the absolute value

fround(Float:value, [method])
Round a floating point value to an integer

Parameter Description

value The value to round

method The rounding method to use. One of:
floatround_round (default, rounds to nearest integer. 0.5 rounds up)
floatround_floor (round down)
floatround_ceil (round up)
floatround_tozero (round down for positive values, round up of negative values)

Returns the value rounded off, as an integer.

Float:ffract(Float:value)
Return the fractional part of a number

Parameter Description

value The value to return the fractional part of.

Returns the fractional part of value.

Example: ffract(3.14) returns 0.14

Float:fsqrt(Float:value)
Return the square root of a value

Parameter Description

value The value to calculate the square root of

Returns the square root of the value.

Float:flog(Float:value, [Float:base])
Return the logarithm of a value

Parameter Description

value The value to return the logarithm of

base Logarithmic base (optional, defaults to e, or 2.71828 )

Page 98 of 121



Float:fpow(Float:value, Float:exponent)
Raise a floating point value to a power

Parameter Description

value The value to raise

power The exponent. May be 0 or negative.

Float:fsin(Float:value)
Return the sine of a value

Parameter Description

value The value to calculate sine of

Float:fcos(Float:value)
Return the cosine of a value

Parameter Description

value The value to calculate cosine of

Float:ftan(Float:value)
Return the tangent of a value

Parameter Description

value The value to calculate tangent of

Float:fasin(Float:value)
Return the reverse sine of a value

Parameter Description

value The value to calculate reverse sine of

Float:facos(Float:value)
Return the reverse cosine of a value

Parameter Description

value The value to calculate reverse cosine of

Float:fatan(Float:value)
Return the reverse tangent of a value

Parameter Description

value The value to calculate reverse tangent of

Float:fatan2(Float:y, Float:x)
Return the inverse circular tangent of y divided by x

Parameter Description

y, x coordinates

Page 99 of 121



random([max])
Return a random value

Parameter Description

Max (optional) The max value of the random value, default to 65536.

Returns a random value between 0 and the given max.
If the max parameter is 0, the random value is between -2^31 and +2^31.

min(value1, value2)
Return the smaller of value1 and value2.

Parameter Description

value1, value2 The two values to compare

max(value1, value2)
Return the larger of value1 and value2.

Parameter Description

value1, value2 The two values to compare

clamp(value, min, max)
Return the value, but no smaller than min, and no larger than max.

Parameter Description

value The value to clamp.

min The smallest value to return.

max The largest value to return.

float2cell(Float:value)
Return the Float value as a cell, using binary conversion (not converting it 
through its value, but just copying the bits).
This is useful in communication functions when parsing binary buffers 
containing float values.

Parameter Description

value The float value to return as a cell

Float:cell2float(value)
Return the cell value as a Float, using binary conversion (not converting it 
through its value, but just copying the bits).
This is useful in communication functions when parsing binary buffers 
containing float values. 

Parameter Description

value The cell value to return as a Float.

Page 100 of 121



qsort(count, data[])
Sorts the array in ascending order.

Parameter Description

count The number of values in the array (min 2, max 500)

data[] Array of cell values to be sorted.

Returns 1 if successful. Returns 0 if there was an error

Example: 
  new a[5] = {45, 23, 89, 3, 7};
 qsort(5, a);

fqsort(count, Float:data[])
Sorts the array of float values in ascending order.

Parameter Description

count The number of values in the array (min 2, max 500)

Float:data[] Array of float cell values to be sorted.

Returns 1 if successful. Returns 0 if there was an error

Example: 
  new Float:a[5] = {4.5, 23.3456, 0.89, 3.3, 77.7};
  fqsort(5, a);

Page 101 of 121



Language functions

heapspace()
Return the size of the heap, in bytes.
This function does not have any parameters.

numargs()
Return the number of arguments in a function call.
This function does not have any parameters.

getarg(argumentno, [index])
Return one argument from a function call.

Parameter Description

argumentno The argument number to return

index (optional) If the argument is an array, this is the index in the array (default to 0)

Returns the value of the argument.

setarg(argumentno, [index], value)
Set an argument value

Parameter Description

argumentno The argument number to return

index (optional) If the argument is an array, this is the index in the array (default to 0)

value The new value of the argument

This function does not return a value.

Page 102 of 121



String functions

tolower(character)
Return the lowercase version of the character code.

Parameter Description

character The character to convert to lowercase

toupper(character)
Return the upperrcase version of the character code.

Parameter Description

character The character to convert to uppercase

strlen(string)
Return the length of a string.

Parameter Description

string The string to compute the length of

strcopy(dest[], const source[], [maxlength])
Copy one string to a buffer.

Parameter Description

dest Destination buffer

source The string that will be copied

maxlength 
(optional)

The max number of characters to copy (defaults to the length of the dest buffer.

Page 103 of 121



strcmp(string1[], string2[], [ingorecase], [length])
Compare two strings

Parameter Description

string1, string2 Two strings to compare

Ignorecase 
(optional)

If “true”, case is ignored

Length (optional) The max number of characters to compare

The return value is:

-1 if string1 comes before string2
0 if the strings are equal
1 if string1 comes after string2

strcat(dest[], source[], [maxlength])
Concatenate two strings

Parameter Description

dest The first part, and the destination buffer

source The part that will be added to dest

Maxlength 
(optional)

The maximum length of the destination buffer (defaults to max size of dest)

Returns the length of dest after concatenation

strdel(string[], start, end)
Remove a numbet of characters from a string

Parameter Description

string The string to work on

start The position of the first characted to remove (starting at 0)

end The position of the last character to remove. Must be equal to or larger than start.

Page 104 of 121



strfind(string[], sub[], [ignorecase], [index])
Search for a substring within a string

Parameter Description

string The string to search in

sub The string to search for

ignorecase 
(optional)

If set to true, case is ignored in the search. Defaults to false.

index (optional) The position in string to start searching from (starting at 0), defaults to 0

strins(dest[], src[], index, [maxlength])
Insert a string into another string

Parameter Description

dest The buffer to work on

src The string to insert into dest

index The position in dest where the src buffer will be inserted

maxlength The maxumum permitted length of dest

strmid(dest[], source[], start, end, [maxlength])
Copy a section of one string to a buffer

Parameter Description

dest The destination buffer

src The source string

start (optional) The position of the first character in source to copy
Defaults to 0

end (optional) The position of the last character in source to copy (myst be equal to or grater than start)
Defaults to the last character in source

maxlength 
(optional)

The maximum size of dest,
Defaults to the size of dest

Page 105 of 121



strval(string, [index])
Evaluate a string and return an integer

Parameter Description

string The string to evaluate

index (optional) The position in string to start evaluating from

Returns the integer value found in the string

valstr(dest[], value)
Convert an integer value to a string

Parameter Description

dest The destination buffer

value The integer value to convert to text

Returns the number of characters stored in dest excluding the teminating 0

memcpy(dest[], source[], index, length, maxlength)
Copy bytes from one buffer to another

Parameter Description

dest The destination buffer

source The source buffer

index The position in the source buffer from which to start copying

length The number of bytes to copy

maxlength 
(optional)

The maximum size of the dest-buffer. Defaults to the size of dest

Page 106 of 121



strformat(dest[], maxlen, format[], [...])
Format a string and insert placeholders

Parameter Description

dest The destination buffer

maxlen The maximum number of characters in the resulting buffer (defaults to the size of the dest 
buffer) 

format A string that describes the format of the result

… The parameters for the placeholders

The format parameter is a string that may contain placeholders. The 
following placeholders are supported:

%c – a single character
%d – an integer
%x – an integer presented as lowercase hex
%X – an integer presented as uppercase hex
%f – a rational (floating point) number
%s – a string

Placeholders can be formatted with a number immediately following the %-
sign. The number indicates the field width in characters, and will add spaces 
if needed. To pad with zeros instead, enter the field with preceded with a 
zero.

To output a percent character, enter “%%”

Example: “%5d” will output something like “  123”. “%05d” will output 
something like “00123”.

Page 107 of 121



Communication functions

PDebug(format[], ...)
Send a string to the debug output on the server

Parameter Description

format String with optional placeholders

... Zero or more values to insert in the placeholders

This function requires a working server link. It sends a string to the debug 
output screen of the server. The string can be formatted according to 
standard C-style printf.

There is a throttling mechanism to prevent PDebug messages from saturating 
the communications link. If you send more than 100 PDebug, and the delay 
between the messages is shorter than 5 seconds, messages will be dropped.

ExtAPICall(wParam, lParam, format[], ...)
Generate an external call to a public server.

Parameter Description

wParam User defined 16 bit parameter

lParam User defined 32 bit parameter

format String with optional placeholders

... Zero or more values to insert in the placeholders

This function requires a working server link and an active account with 
available API service. Each use of this function counts as one API call.

The parameters will be forwarded to a server URL defined under Configure-
System-Ethernet settings-External Server URL (see page 57). The format of 
the data is determined by the URL type. The URL must begin with one of: 
http:// https:// json:// jsons:// xml:// or xmls://

The return value is 1 if the message was queued successfully, or 0 if the 
message buffer was full. Note that a return value of 1 does not mean the 
message was delivered.

Page 108 of 121



ModbusSend(address, command, length, data[])
Send out a command to a Modbus device

Parameter Description

address The destination address of the modbus device (1-63)

command The modbus command. One of:
    READ_COILS (0x01)
    READ_INPUTS (0x02)
    READ_REGISTERS (0x03)
    READ_INPUT_REGISTERS (0x04)
    WRITE_COIL (0x05)
    WRITE_REGISTER (0x06)
    READ_EXCEPTION (0x07)
    DIAGNOSTIC (0x08)
    WRITE_REGISTERS (0x10)
    READ_DEVICEID (0x2B)

length Number of bytes to send after the command byte

data The bytes to send. Refer to the modbus specification and your specific device manual for 
detailed information on the content of this parameter.
Up to 10 bytes can be send in a single command call.

If a response is received as a result of this function, the @ModbusReply 
function will be called.

getThermostat(channel, address, register)
Retrieve the status of a single thermostat.

Parameter Description

channel The communication port where the thermostat is connected. One of:
   MICROLAN
   MODBUS
   LOCALRF
Note – currently only MODBUS is supported.

address The bus address of the thermostat

register The thermostat register to retrieve. One of:
  setHeat         Current heating setpoint (1/10th degrees)
  setCool         Current cooling setpoint (1/10th degrees)
  adjHeat         Heating setpoint override
  adjCool         Cooling setpoint override
  minAdjust       Override minutes remaining
  Lock            1=thermostat UI is locked, 0=unlocked
  ScheduleMode    0=Standard, 1=Alternate mode
  SysMode         0=off, 1=heat, 2=cool, 3=auto heat/cool
  FanMode         0=auto, 1=on
  Temp            Ambient temperature (1/10th degrees)
  Fan             Fan status 0=off, 1=running
  Call            Call status: 0=off, 1=heating, 2=cooling

The return value depends on the “register” parameter as described above.

Example to read the current ambient temperature from modbus thermostat 
with address 8:

     new t = getThermostat(MODBUS, 8, Temp);

At 78.9F, the value of t will be 789.

Page 109 of 121



setThermostat(channel, address, register, value, lock)
Control a single thermostat.

Parameter Description

channel The communication port where the thermostat is connected. One of:
   MICROLAN
   MODBUS
   LOCALRF
Note – currently only MODBUS is supported.

address The bus address of the thermostat

register The thermostat register to change. One of:
  setHeat         Current heating setpoint (1/10th degrees)
  setCool         Current cooling setpoint (1/10th degrees)
  adjHeat         Heating setpoint override
  adjCool         Cooling setpoint override
  minAdjust       Override minutes remaining
  ScheduleMode    0=Standard, 1=Alternate mode
  SysMode         0=off, 1=heat, 2=cool, 3=auto heat/cool
  FanMode         0=auto, 1=on

lock Boolean to determine if the change should lock the thermostat from user input.
 false = leave thermostat open to user input
 true = lock thermostat screen

This function do not return a value.

SerialSend(length, data[])
Send data on the serial port. 

Note that the port needs to be in “Custom protocol” mode. See page 58.

Parameter Description

length The number of bytes to be sent

data[] A buffer of bytes that will be sent.

The data will be sent with the bitrate configured on the system settings 
screen. Data is always sent as 8 databits, 2 stopbits and no parity.

Received data is handled by the @SerialData event handler, see page 116.

This function will return 1 if the data was buffered for transmission. 
It returns 0 if the transmit buffer is full and no data was buffered.

Page 110 of 121



Library functions

Library functions are declared as stock functions and will be included automatically if 
referenced from the user script. Using a stock function will add significantly to the size of 
your code, so make sure your script does not grow beyond 64k compiled.

GetTime(time[time_s], [UTC=false])
This function will fill in the supplied time[time_s] structure with current 
local date and time. If UTC is sett to true, UTC time is returned.

Parameter Description

time[time_s] Structure for date and time, with the following properties:
  ti_year, ti_month, ti_day, ti_hour, ti_minute, ti_second, ti_wday

UTC (optional) Flag (true or false). If set to true, the returned time is UTC time instead of local time.

Example usage:

new t[time_s];
GetTime(t);
PDebug(“Time %d:%d:%d”, t[ti_hour], t[ti_minute], t[ti_second]);

Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b)
This function calculates a best-fit straight line using the least squares method

Parameter Description

x[], y[] Coordinated to use in calculation

ndata How many points to expect in x[] and y[] arrays.

a Line offset

b Line slope

Page 111 of 121



SunPosition(UTCtime[time_s], Float:latitude, Float:longitude, 
&Float:elevation, &Float:azimuth)

This function returns the relative position of the sun, given time and 
position.

Parameter Description

UTCtime[time_s] Structure with time and date. Note that this needs to be UTC time.

latitude Latitude of observation point, in degrees from equator. Positive numbers are north.

longitude Longitude of observation point, in degrees from Greenwich meridian. Positive 
numbers are east.

&elevation The function will set this variable with the elevation of the sun above the horizon, in 
degrees. Negative numbers mean that the sun is below the equator.

&azimuth The function will set this variable with the azimuth of the sun, in degrees. 0 is north, 90 
is east, 180 is south and 270 is west.

Example usage:

new t[time_s];
new Float:elev, Float:azim;
GetTime(t, true); // Get UTC time
SunPosition(t, 61.191,-149.802, elev, azim); // Anchorage, AK
PDebug(“Elevation:%f, Azimuth:%f”, elev, azim);

Page 112 of 121



Float:Dewpoint(Float:RH, Float:T, [Farenheit=false])
This function calculates the dew point.

Parameter Description

RH Relative humidity, between 0.00 and 1.00

Temp Temperature, degrees Celcius (or Farenheit if Farenheit parameter is true)

Farenheit (optional) false (default) input and output is in degrees Celcius.
true input and output is in degrees Farenheit.

Example usage:
// Read temperature in F from MicroLan sensor on IN6
new Float:T = GetInputValue(6) / 8.8888 - 67.0;

// Read RH in percent from MicroLan sensor on IN7
new Float:RH = (GetInputValue(7) / 5000.0 - 0.16)/0.0062;    

// Calculate Dewpoint in F
new Float:DP = Dewpoint(RH/100.0, T, 1);

// Put result in IN13
SetInputValue(13, fround(DP * 100.0));

Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false])
This function calculates the energy content in moist air.

Parameter Description

Alt Altitude in meters

RH Relative humidity, between 0 and 1

Temp Temperature, degrees Celcius

BTU (optional) false (default) returns value in SI units (kJ/kg dry air). true returns value in English 
units (Btu/lb dry air)

Page 113 of 121



System events

@Tick(uptime)
The @Tick function is called automatically once every second.

Parameter Description

uptime Number of seconds since last system reset.

@Alarm(sourcetype, sourceid, alarmno)
The @Alarm function is called each time an alarm event is generated from 
the configuration. The function is called even if there are no actions 
configured, and regardless of conditions on any existing actions.

Parameter Description

sourcetype Indicates the source of the alarm event, and is one of:
SOURCE_INPUT (1) – source is an input
SOURCE_SCHEDULE (2) – source is a schedule
SOURCE_TIMER (3)– source is a timer

sourceid Indicates the source index, e.g. the input number (1-40), schedule number (1-20) or 
timer number (1-20)

alarmno Indicates the alarm number (1-4)

@Restore(sourcetype, sourceid, alarmno)
The @Restore function is called each time a restore event is generated from 
the configuration. The function is called even if there are no actions 
configured, and regardless of conditions on any existing actions.

Parameter Description

sourcetype Indicates the source of the restore event, and is one of:
SOURCE_INPUT (1) – source is an input
SOURCE_SCHEDULE (2) – source is a schedule
SOURCE_TIMER (3)– source is a timer

sourceid Indicates the source index, e.g. the input number (1-40), schedule number (1-20) or 
timer number (1-20)

alarmno Indicates the alarm number (1-4)

Page 114 of 121



@Timer(timerno)
The @Timer function is called when a millisecond timer set with the 
“SetTimer” function expires. Note that the millisecond times has nothing to 
do with the timers in the configuration settings.

Parameter Description

timerno The number of the timer that expired (1-4)

@ModbusReply(address, command, length, data[])
This function is called when a reply is received from a Modbus device as a 
result of a call to ModbusSend.

Parameter Description

address The modbus device address that replied

command The modbus command number (see ModbusSend)

length Number of bytes in the data[] array.

data[] A byte-array with the received data as it was received over ModBus. 
Note that the array starts with the byte after the command byte. 
The max number of bytes that can be received in one call is 20.

Example:

mbReadReg(deviceadr, regno, regcount)
{
  new b[4 char];
  regno = (regno%10000)-1; // Modbus address mapping
  b{0} = (regno>>8)&0xFF;  // Build command buffer
  b{1} = regno&0xFF;
  b{2} = (regcount>>8)&0xFF;
  b{3} = regcount&0xFF;
  ModbusSend(deviceadr, READ_REGISTERS, 4, b);  // Queue to send 
}

@Tick(uptime)
{
  if((uptime%20)==0) {     // every 20 seconds..
    mbReadReg(5, 40047, 1);  // Request reg 40047 from device 5
  }
}

@ModbusReply(address, command, length, data[])
{
  new x;
  // Make sure this is a reply to the above query
  if((address==5) && (ModbusCommand:command==READ_REGISTERS)) {
    x = (data{1}<<8) | data{2};  // Extract a 16 bit value
    PDebug("Read %d", x);        // Print on debug console 
  }
}

Page 115 of 121



@SerialData(length, data[])
The @SerialData function is called when a packet of bytes has been received 
on the serial port. A packet is considered complete when there is at least five 
byte-times of no data after any byte(s).

Note that this only applies when the serial port is is Custom Protocol mode 
(see page 58).

Parameter Description

length The number of bytes received

data[] A buffer that holds the data

Page 116 of 121



Specifications

ezeio™

Size 153 x 100 x 38 mm (6.0” x 3.9” x 1.5”)
mounting ears extend 15mm (0.6”) on each side. Hole 
centers are 166mm (6.5”) apart. Allow at least 40mm 
(1.6”) margin for connectors

Weight Approx 220g (0.5lb)

Power 8-25VDC, <2W average, 7W peak

Operating
environment

0-50C (32-120F)

Hardwire inputs 4 inputs on screw terminal:
0-10V, 10mV resolution, >70kΩ impedance
0-30mA, 32uA resolution, 100Ω current sense resistor

Hardwire outputs 2 relay outputs with screw connections:
Form C (1 pole switching)
Max 2A, 50V load

Other connections Ethernet, TP 10/100, RJ45
MicroLAN, RJ12
Serial RS485, RJ45-jack
GSM antenna SMA (optional)

Expandability Up to 40 sensor inputs total
Up to 40 outputs total

MicroLan Max 20 MicroLAN devices supported
Active pullup on data wire
5V and raw DC provided
RJ12 jack compliant to Dallas connector standard
Max 50m (150ft) network length

DC output Unregulated output, max 200mA (“+” terminals)
Regulated 5V output, max 100mA (“5” terminal).

Serial RS485/Modbus RTU, bidirectional 19200bps

GSM (optional) GSM/GPRS/EDGE 850/900/1800/1900MHz
US 3G: 850/1900MHz
EU/AU 3G: 900/2100MHz
GPS 16ch, active antenna

Page 117 of 121



Configuration and programming

Logging Individual logging on each input. 10s to 1h interval. 
Automatically communicated and stored on redundant 
servers. 8000 samples/channel local buffer.

Input triggers Up to four alarms per input, each with alarm/restore 
thresholds and separate holdoff times.
Each alarm and restore can trip up to four separate 
actions, such as sending messages, controlling outputs 
or counters.

Schedules Up to 20 schedules, each with four intervals and flags for 
each day in the week. Up to four actions for each 
schedule on entry/exit of an interval.

Timers Up to 20 timers, each can be set to repeat hourly, daily, 
weekly or monthly. Each timer can trip up to four actions.

Scripts (optional) Up to 64kB compiled script code, with 6kB of RAM. 
Extensive function library with support for floating point 
math, string manipulation and communication functions.

Server Communication

Configuration Automatic, DHCP

Host protocol IP/UDP, proprietary encrypted payload

Port Outbound port UDP 8844
Inbound port UDP 28672-32767 (random per session)

Encryption 128 bits, unique key per ezeio

Traffic Typical 5-15MB / month (depends on usage)

Local buffer 8000 samples per channel, non-volatile

Page 118 of 121



Warranty

Manufacturers warranty statement

All ezeio™ and accessories (the products) manufactured by eze System, Inc. 
are warranted for two years against manufacturing issues. The warranty is 
void if the products have been physically altered or subjected to conditions 
beyond the physical limits of the devices. 

The company gives only the warranties specifically stated herein and waives 
all implied warranties, including but not limited to warranties for 
merchantability and for fitness for a particular use. The company’s 
obligation for a breach of a warranty is to repair or replace the product.

Liability disclaimer

eze System is not liable for any injury or mishap sustained by the use of the 
product. Please consult with a qualified dealer/installer before placing the 
product in service. Installation and use of the product must comply with 
local laws and regulations. The end user of the products acknowledges risks 
and waives any and all claims against eze System, Inc. and any of its agents. 
eze System is not responsible for any applications of its products or the 
suitability of its products for any application. eze System only warrants that 
the product will log, monitor and control that device if it is properly 
installed, configured and if the Internet connection has been properly 
initiated and maintained. Company is never responsible for any losses 
incurred by failure of a user designed system which results in any monetary 
loss, damage, injury or loss of life. The company’s products are not designed 
to be fail-safe or fool-proof and should not be used in safety critical 
applications.

Page 119 of 121



Standards compliance

Applicable standards

    Part 15 Subpart B Sections 15.107 and 15.109

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, 
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection 
against harmful interference in  a residential installation. This equipment generates, uses and can 
radiate radio frequency energy and, if not installed and used in accordance with the instructions,  may 
cause harmful interference to radio communications. However, there is no guarantee that interference 
will not occur in a particular installation. If this equipment does cause harmful interference to radio or 
television reception, which can be determined by turning the equipment off and on, the user is 
encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ezeio-W and ezeio-GW models contain FCC ID: X7J-A11072401 
ezeio-G and ezeio-GW models contain FCC ID: UDV-1103022011008

    2004/108/EC (EMC), 73/23/EC (LVD)

This equipment meets or exceeds the requirements of the following standards: EN55022 (2010), 
EN55024 (2010), EN61000-3-2 (2006) +A1 +A2, EN61000-3-3 (2008).

     

  AS/NZS CISPR 22

Tested to comply to the Australian/New Zealand requirements for information technology equipment.

California Safe Drinking Water and Toxic Enforcement Act of 1986:

WARNING: This product contains chemicals known to the State of California to cause cancer and 
birth defects or other reproductive harm.

Page 120 of 121



Access your ezeio at:

www.ezecontrol.com

ezeio email:

{serial}@ezecontrol.com

subject doesn't matter, first line of message is password

ezeio SMS:
US: +1 916 281-9001

UK/Global: +44 7937 985 875

SE: +46 769 439 907

AU: +61 448 838 189

ezeioezeio serial, password, command

Visit the eze System, Inc. website at
www.ezesys.com

The eze trademark, ezeio and the eze system design are property of eze System, Inc.

Any other trademarks referenced are properties of their respective owner.

© eze System, Inc 2008-2017
www.ezesys.com

Page 121 of 121

http://www.ezecontrol.com/
mailto:XYZ987@ezecontrol.com
http://www.ezesys.com/
http://www.exys.net/

	ezeio™ user manual
	Important information
	WARNINGS
	Registration
	Support contact information

	Introduction
	What is the ezeio™ ?
	Model information
	Base model
	Wireless sensors
	GSM/3G/GPS
	Common features


	Creating accounts and users
	Overview
	Creating a new account
	Step 1:
	Step 2:
	Step 3:
	Step 4:

	Add an ezeio to an existing account
	Adding users to an existing account
	Moving or removing an ezeio from an account

	Connections and installation
	Things to consider before installing the ezeio™
	ezeio™ overview
	Power connection
	Network connection
	Setting a static (fixed/manual) IP
	Restoring DHCP functionality

	General purpose inputs
	Inputs – Pulse, switch or resistive sensors
	Inputs – External voltage sources
	Inputs – Current sensors
	Relay outputs
	Examples of how to connect a load (here shown as a light bulb):

	+ DC output terminal
	MicroLAN
	MicroLAN indicator
	Connecting a MicroLAN device
	MicroLAN connector pinout
	MicroLAN extension cables

	Modbus / serial port
	RS-485/Modbus RTU port pinout
	Connecting a Modbus device
	About Modbus
	While Modbus TCP is not supported by the ezeio™, there are protocol converters for Modbus TCP to Modbus RTU. Contact eze System for details.

	GSM/3G/GPS module (select models only)
	Inserting the SIM card
	Attaching the GSM (communication) antenna
	GSM service
	GPS (positioning) antenna
	GSM Settings
	GSM (Cellular) indicator
	GPS position


	Web interface overview
	Logging in

	Dashboard screen
	Dashboards

	Status screen
	Live input status
	Output status and control
	Thermostat status
	Event log
	Downloading log data
	Viewing graph of log data
	Controlling the graph


	Configure screen
	Service status & settings
	Service status
	Service settings
	ezeio™ Configuration
	Resource tree
	Inputs
	Input name
	Unit
	Decimals to show
	Autoscale
	Max value in graphs
	Min value in graphs
	Input type
	Input type – custom
	Input Raw to unit
	Unit to input Raw
	Raw reading / ADC resolution
	Digital pulse input
	Text status
	Log interval
	Input location
	Input locations for the ezeio™:
	Input conversion helper dialogs (calibration)

	Calibrating analog inputs
	Alarm settings
	Alarm name
	Threshold for alarm
	Alarm holdoff
	Threshold for restore
	Restore holdoff

	Actions
	Action name
	Action type
	List of possible actions

	Conditions
	Outputs
	Event controlling outputs
	State controlling outputs
	Output name
	Output location
	One-shot coil msg
	Use only conditions

	Schedules
	Timers
	Thermostats / Thermostat schedules
	Conditions for using alternate settings
	Other settings / Stir

	Devices
	Configuring Modbus Devices
	Wireless devices
	Configuring wireless devices
	Wireless Pairing
	Break pairing

	Script (premium feature)
	System
	Controller name
	Controller location
	System info address
	Time zone
	Read passcode
	Control passcode
	Registration code
	Allow firmware update
	Allow config update
	Allow dealer access
	Delete controller
	Ethernet settings
	External server URL
	Phone module PIN
	SIM card PIN
	GPRS APN, login name , password
	Phone init string
	GPRS init string
	Clone Controller
	Modbus speed
	Use slow polling
	Custom protocol
	Type of controller
	Firmware version
	Last system reset
	Last comm reset
	Last contact
	Last endpoint
	Last local IP


	Actions
	List of possible actions:
	Action: Send message
	Notes about the Message field
	Email
	SMS Text
	Twitter
	HTTP POST
	JSON POST
	Pushover (http://pushover.net)
	Push to Speech (http://pushtospeech.appspot.com)
	Exosite (http://exosite.com)
	Voice
	Control API call

	Action: Log event
	Action: Set output
	Action: Set counter
	Action: Increment counter
	Action: Decrement counter
	Action: Control thermostat
	Action: ModBus coil control
	Action: ModBus write register

	Account screen
	Account
	Contact email
	System info address
	Account status

	Personal
	Users
	Log in
	Edit own info
	Edit controllers
	Remote control
	Release controllers
	Manage account


	Sending control commands
	Email
	Control via SMS (cellphone texting)
	Control Commands

	Server API
	API access and security
	API authentication and example

	Live status in JSON format via REST API
	Historical data access in JSON format via REST API
	Controlling the ezeio™ via REST API
	Direct output control : 'output'
	Set input counter : 'counter'
	Set input value: 'input'
	Set timer: 'timer'
	Control thermostat: 'thermostat'
	Modify thermostat schedule: 'thermostatschedule'

	Spreadsheet integration
	Microsoft Excel®
	LibreOffice Calc

	Automatic export (push)
	Exporting using JSON push
	JSON push schema
	Expected return value (acknowledgement)
	Verifying the validity of the data
	BuildingOS export
	EnergyStar export
	eSight export
	Exosite export
	FTP export


	Script language
	Script introduction
	Help with programming
	Capabilities
	Event-driven design
	String handling
	Sleep-function


	Script function library
	Configuration interface functions
	SetOutput(outputno, cadence, [cutoff])
	GetOutputState(outputno)
	GetInputValue(inputno)
	SetInputValue(inputno, newvalue)
	GetInputCount(inputno)
	SetInputCount(inputno, newcount)
	GetInputState(inputno)
	GetScheduleState(scheduleno)
	GetSystemStatus(item)

	Calendar and time functions
	GetSecond()
	GetMinute()
	GetHour()
	GetDay()
	GetMonth()
	GetYear()
	GetWeekday()
	SetTimer([timerno], timeoutms, repeat)

	Mathematical functions
	Float:fabs(Float:value)
	fround(Float:value, [method])
	Float:ffract(Float:value)
	Float:fsqrt(Float:value)
	Float:flog(Float:value, [Float:base])
	Float:fpow(Float:value, Float:exponent)
	Float:fsin(Float:value)
	Float:fcos(Float:value)
	Float:ftan(Float:value)
	Float:fasin(Float:value)
	Float:facos(Float:value)
	Float:fatan(Float:value)
	Float:fatan2(Float:y, Float:x)
	random([max])
	min(value1, value2)
	max(value1, value2)
	clamp(value, min, max)
	float2cell(Float:value)
	Float:cell2float(value)
	qsort(count, data[])
	fqsort(count, Float:data[])

	Language functions
	heapspace()
	numargs()
	getarg(argumentno, [index])
	setarg(argumentno, [index], value)

	String functions
	tolower(character)
	toupper(character)
	strlen(string)
	strcopy(dest[], const source[], [maxlength])
	strcmp(string1[], string2[], [ingorecase], [length])
	strcat(dest[], source[], [maxlength])
	strdel(string[], start, end)
	strfind(string[], sub[], [ignorecase], [index])
	strins(dest[], src[], index, [maxlength])
	strmid(dest[], source[], start, end, [maxlength])
	strval(string, [index])
	valstr(dest[], value)
	memcpy(dest[], source[], index, length, maxlength)
	strformat(dest[], maxlen, format[], [...])

	Communication functions
	PDebug(format[], ...)
	ExtAPICall(wParam, lParam, format[], ...)
	ModbusSend(address, command, length, data[])
	getThermostat(channel, address, register)
	setThermostat(channel, address, register, value, lock)
	SerialSend(length, data[])

	Library functions
	GetTime(time[time_s], [UTC=false])
	Linfit(Float:x[], Float:y[], ndata, &Float:a, &Float:b)
	SunPosition(UTCtime[time_s], Float:latitude, Float:longitude, &Float:elevation, &Float:azimuth)
	Float:Dewpoint(Float:RH, Float:T, [Farenheit=false])
	Float:Enthalpy(Float:Alt, Float:RH, Float:Temp, [BTU=false])

	System events
	@Tick(uptime)
	@Alarm(sourcetype, sourceid, alarmno)
	@Restore(sourcetype, sourceid, alarmno)
	@Timer(timerno)
	@ModbusReply(address, command, length, data[])
	@SerialData(length, data[])


	Specifications
	ezeio™
	Configuration and programming
	Server Communication

	Warranty
	Manufacturers warranty statement
	Liability disclaimer

	Standards compliance
	Applicable standards


